
A Non-deterministic Approach to
Ambiguity Detection in Context Free

Grammars

Naveneetha K. Vasudevan
Department of Informatics
King’s College London

Thesis submitted in partial fulfilment for the degree of
Doctor of Philosophy

May 2017

Abstract

Context Free Grammars (CFGs) are widely used for describing programming languages.
CFGs are often ambiguous, allowing inputs to be parsed in more than one way. While
ambiguity has applications in many fields, it is problematic for programming languages—if
an input presents a choice of parses, which one should the compiler use? It is thus desirable
to identify and remove ambiguity in programming language grammars. However, since
CFGs typically describe infinite languages, ambiguity is, in general, undecidable.

Previous approaches to detecting ambiguity have relied on searching a grammar ‘in depth’
(using small search strings) from its root. In this thesis, I hypothesise that searching
a grammar ‘in breadth’ (using large search strings) is more likely to uncover ambigu-
ity. I introduce the novel concept of search-based ambiguity detection, which is a non-
deterministic breadth-based approach to CFG ambiguity detection. Starting from the
simplest possible search-based ambiguity algorithm, I show how a high quality algorithm
can be constructed using this approach.

In order to evaluate my approach, I also introduce two new techniques for generating
large corpuses of random grammars. I use Boltzmann sampling to produce fully random
grammars with some statistical guarantees of coverage, and grammar mutation for gen-
erating random programming language grammars from an existing set of unambiguous
grammars. My grammar corpuses allow me to carry out the largest cross ambiguity de-
tection tool experiment to date. These experiments show that search-based ambiguity
detection performs as well as, and generally better, than extant tools.

Finally, I present a novel search-based approach to grammar ambiguity minimisation,
showing that it is effective at minimising both the ambiguous input and the portion of
the grammar identified as containing the ambiguity.

Acknowledgements

My sincere gratitude goes to Laurence Tratt. His guidance, patience and support through-
out the course of my research work has been invaluable. I would also like to thank my
fellow team members in the Software Development Team at King’s College for their sup-
port, guidance and of course friendship.

I am grateful to the Department of Informatics at King’s College for giving me extended
access to computing facilities. I am much indebted to my employer ThoughtWorks for
being generous in giving me the time off to complete my PhD.

I would like to thank Bas Basten, Alexis Darrasse, and Friedrich Schröer for their help
during the course of the research. I am much indebted to Edd Barrett for his insightful
comments on drafts of this thesis. I am also thankful to the reviewers for their valuable
comments and suggestions, which helped me to improve this thesis.

Finally, I am grateful to my family. This thesis would not have been possible without
their understanding and support.

3

Contents

1 Introduction 10

1.1 Parsing . 10

1.2 Goal and Motivation . 10

1.3 The SinBAD Solution . 12

1.4 Overall Thesis Structure . 12

1.5 Contributions . 13

1.6 Detailed Synopsis . 14

1.7 List of Publications . 15

2 An Overview of Ambiguity Detection 16

2.1 Grammars and Languages . 16

2.1.1 Formal Definition . 17

2.1.2 Chomsky Hierarchy of Grammars and Languages 17

2.2 CFGs . 18

2.2.1 Generating Sentences from a Grammar 19

2.2.2 Recursion . 20

2.2.3 Parse Tree . 20

2.2.4 Parsing Grammars . 20

2.2.4.1 Top-down Parsers . 21

2.2.4.2 Bottom-up Parsers . 22

2.2.4.2.1 Bottom-up Parsing – an Example 22

2.3 Ambiguity . 23

2.3.1 Ambiguity in a PL Grammar . 25

2.4 Ambiguity Detection . 27

CONTENTS CONTENTS

2.4.1 LR(k) and LRR . 27

2.4.1.1 LR(1) Parse Table – an Example 28

2.4.1.2 Ambiguity Checking with LR(k) 29

2.4.2 Exhaustive . 30

2.4.2.1 Gorn . 30

2.4.2.1.1 Gorn’s Method – an Example 30

2.4.2.2 Cheung and Uzgalis . 31

2.4.2.2.1 CandU Method – an Example 32

2.4.2.3 AMBER . 33

2.4.2.3.1 Earley Parsing 34

2.4.2.3.2 Earley Recogniser as Sentence Generator 34

2.4.2.3.3 Ambiguity Characterisation 35

2.4.2.3.4 AMBER Options 36

2.4.2.3.5 AMBER Method – an Example 36

2.4.3 Approximation . 39

2.4.3.1 ACLA . 39

2.4.3.1.1 ACLA Method – an Example 40

2.4.3.2 Noncanonical Unambiguity 42

2.4.4 AmbiDexter . 43

2.5 Summary . 45

3 Search-Based Ambiguity Detection 46

3.1 Depth-based Approach . 46

3.1.1 Why Depth-based Approaches Sometimes Fail? 47

3.1.2 Breadth-based Approach . 48

3.2 Search-based Techniques . 48

3.3 SinBAD . 49

3.4 Definitions . 50

3.5 Search-based Backends . 50

3.6 Purerandom . 51

3.6.1 Non-termination in purerandom– an Example 52

5

CONTENTS CONTENTS

3.7 Heuristic Based Backends . 53

3.7.1 The dynamic1 Backend . 53

3.7.1.1 Non-termination in dynamic1 – an Example 56

3.7.2 The dynamic2 Backend . 57

3.7.2.1 Non-termination in dynamic2 – an Example 59

3.7.2.2 Summary . 60

3.7.3 The dynamic2 rws Backend . 60

3.7.3.1 Non-termination in dynamic2 rws– an Example 63

3.7.3.2 Summary . 66

3.7.4 The dynamic3 Backend . 66

3.7.4.1 Non-termination in dynamic3– an Example 69

3.7.5 The dynamic4 Backend . 70

3.8 Summary . 72

4 Grammar Generation 74

4.1 Boltzmann Sampled Grammars . 74

4.1.1 Specification Generator . 75

4.1.2 Class Specification . 75

4.1.3 Boltzmann Sampler . 77

4.1.4 Filtering . 77

4.2 Mutated Grammars . 78

4.3 Summary . 79

5 Dimensioning Experiments 82

5.1 Experimental Suite . 82

5.2 Grammar Collection . 83

5.3 Hardware . 84

5.4 Tools and Options . 84

5.5 Search-based Techniques . 86

5.5.1 Choice of Representation . 86

5.5.2 Fitness Function . 86

5.5.3 Move Operator . 87

6

CONTENTS CONTENTS

5.6 Formulating Tool Options as a Search Problem 87

5.6.1 Solution Representation . 87

5.6.2 Fitness Function . 88

5.6.3 Move Operator . 88

5.6.4 Local Maximum . 89

5.7 Choosing a Search-based Technique . 89

5.7.1 Hill Climbing . 90

5.8 Implementation of Hill Climbing . 90

5.8.1 Definitions . 91

5.8.2 Hill Climbing - Single Option . 91

5.8.3 Neighbour Selection . 92

5.8.4 Local Maxima . 93

5.8.5 Hill Climbing – AMBER . 95

5.8.6 Hill Climbing – AmbiDexter . 95

5.8.7 Hill Climbing – Dynamic Backends 96

5.8.8 Hill Climbing – The dynamic2 rws Backend 96

5.9 Crude Dimensioning . 98

5.9.1 Grammar Corpus and Time Limit 98

5.9.2 Hill Climbing – Run-time Values 98

5.9.3 Invoking Hill Climbing Functions 99

5.9.4 Additional Tool Runs . 100

5.9.5 Crude Dimensioning Results . 100

5.9.5.1 Boltzmann Grammars . 100

5.9.5.2 Mutated Grammars . 101

5.10 Crude Dimensioning – Summary . 102

5.11 Fine Dimensioning . 106

5.11.1 Grammar Corpus and Time Limit 106

5.11.2 Results . 107

5.11.2.1 Boltzmann Grammars . 107

5.11.2.2 Mutated Grammars . 111

5.12 Best Performing Tool Options . 114

7

CONTENTS CONTENTS

5.12.1 AMBER . 114

5.12.2 AmbiDexter . 116

5.12.3 SinBAD ’s backends . 116

5.13 Summary . 117

6 Main Experiment 118

6.1 Experiment Methodology . 118

6.2 Results . 119

6.2.1 Tool Independent Analysis . 119

6.2.2 Tool Overview . 121

6.2.3 ACLA . 121

6.2.4 AmbiDexter . 122

6.2.4.1 Filtering Performance . 123

6.2.4.2 Length of Ambiguous Fragments 123

6.2.5 AMBER . 124

6.2.6 SinBAD ’s Backends . 124

6.2.6.1 Depth. vs. Breadth – a Comparison 124

6.2.6.2 Ambiguities that SinBAD Backends Didn’t Find 126

6.3 Validation Experiment . 127

6.4 Validating the Hypotheses . 127

6.5 Threats to Validity . 128

6.6 Summary . 128

7 Minimising Grammar Ambiguity 130

7.1 Definitions . 130

7.2 The minimiser1 Minimiser . 131

7.2.1 Sanity Checking minimiser1 ’s Grammar Minimisation 132

7.3 Minimisation using minimiser1– an Example 132

7.4 Evaluating minimiser1– Minimiser Experiment 134

7.4.1 Run-Time Values . 134

7.4.2 Minimiser Experiment – Results . 135

7.4.2.1 Grammar Size . 135

8

CONTENTS CONTENTS

7.4.2.2 Sentence Length . 136

7.4.2.3 Ambiguous Fragment Length 136

7.4.2.4 Longer Sentences and Ambiguous Fragments 136

7.5 Summary . 137

8 Conclusions 138

8.1 Conclusions . 138

8.2 Future Work . 139

Appendices 140

A Non-termination in dynamic2 – Boltzmann Grammar 141

B Crude Dimensioning – Altered PL Grammars 144

C Fine Dimensioning – Altered PL Grammars 147

D Verifying minimiser1 151

9

Chapter 1

Introduction

1.1 Parsing

Context Free Grammars (CFGs) are widely used for describing formal languages, including
Programming Languages (PLs). The full class of CFGs includes ambiguous grammars—
those which can parse inputs in more than one way. Needless to say, ambiguous grammars
are highly undesirable. If an input can be parsed in more than one way, which one of those
parses should be taken? We would not enjoy using a compiler if it were to continually
ask us to choose which parse we want. Unfortunately, we know that, in general, it is
undecidable as to whether a given grammar is ambiguous or not [12]. While there are
various parsing approaches which allow a user to manually disambiguate amongst multiple
parses, one can not in general know if all possible points of ambiguity have been covered.
Perhaps because of this, most tools use parsing algorithms such as LL and LR, which
limit themselves to parsing a subset of the unambiguous grammars. This leads to other
trade-offs: grammars have to be contorted to fit within these subsets; and these subsets
rule out the ability to compose grammars [16].

Generalised parsers such as Earley [17], GLL [37], GLR [38] are being used more often
as they are able to handle much larger classes of CFGs. Generalised parsers allow a
grammar developer to design the grammar in a way that best describes the structure
of the intended language. The grammar doesn’t have to be contorted to comply with
YACC, for instance. The downside in using the entire class of CFGs is the possibility
of ambiguity. Therefore, when using the entire class of CFGs to describe programming
languages, it becomes necessary to have an ambiguity detection tool.

1.2 Goal and Motivation

Ambiguity detection tools detect ambiguities in a grammar by exploring its search space
systematically. Since ambiguity detection is statically undecidable, ambiguity detection

10

CHAPTER 1. INTRODUCTION 11

approaches are generally unable to guarantee that a given grammar is unambiguous in
finite time. This then leads to different design decisions being taken in order to explore a
grammars’ search space.

The extant ambiguity detection approaches are deterministic and explore a grammar in
‘depth’. A subset of the grammar space is searched in exhaustive detail by generating
large numbers of short strings and then checking for ambiguity. My work is based on the
idea that exploring a grammar in ‘breadth’ has a better chance of uncovering ambiguity.
I formalise this notion in the following hypothesis:

H1 Covering a grammar in breadth is more likely to uncover ambiguity than covering it
in depth.

This hypothesis captures the notion that covering as much of a grammar as possible
is more likely to uncover ambiguity. A ‘naive’ notion of grammar coverage requires that
grammar rules are visited at least once [33]; while easily achieved, this makes no guarantees
that all interesting combinations of rules are explored. A more ‘powerful’ notion therefore
involves combinations of rules or productions [27]. Although complete coverage under this
latter notion may be definable as a finite set, there is no guarantee that such a set is of
a tractable size. My aim is therefore to find an approach which falls somewhere between
the naive and the powerful notions of grammar coverage.

Understanding the relation between CFGs and their various subsets is key to under-
standing the motivation for, and the results of, my work. Figure 1.1 shows the relation
between the various grammar subsets. Since all the sets involved are infinite, this diagram
is necessarily an approximation. An important question to my work is how much of the
expressivity of the unambiguous (LL or LR) grammars do PL grammars use? I therefore
make the following hypothesis:

H2 PL grammars are only a small step away from being ambiguous.

This hypothesis captures the notion that much of the expressivity of the PL grammars
overlaps with that of the unambiguous (i.e. LL or LR) grammars. When defining a
grammar for a PL, a PL author typically starts with a grammar that best describes the
intended language. It is only when the grammar is fed to YACC (for parser generation),
one discovers that the grammar is potentially ambiguous (i.e. contains shift/reduce or
reduce/reduce conflicts). The grammar is then gradually adjusted, resolving each of the
conflict, to make it unambiguous. My careful observation of several of the PL grammars
from grammar archives [2] revealed that most PL grammars reside within the unambiguous
subset. My underlying hypothesis is that PL grammars often stretch to the very edge of
the class of unambiguous grammars. Stated differently, I suspect that unambiguous PL
grammars are only a small step away from being ambiguous.

CHAPTER 1. INTRODUCTION 12

Context-Free Grammars

PL grammars

Boltzmann

grammars
Mutated

PL grammars

Unambiguous

grammars

Figure 1.1: A finite approximation of the class of CFGs and the various subsets of grammars
contained within. Set of unambiguous grammars are a strict subset of CFGs. Set of PL gram-
mars are a subset of Unambiguous grammars. Mutated PL grammars are on the very edge of
Unambiguous grammars. Boltzmann grammars are distributed randomly within the class of
CFGs.

1.3 The SinBAD Solution

In the light of the above hypotheses, this thesis presents SinBAD , a breadth-based am-
biguity detection tool. SinBAD houses several heuristics, ranging from purely random
to semi-non-deterministic, for uncovering ambiguities in grammars. Each of SinBAD ’s
heuristics explore a grammars’ search space in breadth, visiting grammar rules semi-
randomly, to uncover ambiguous strings. Table 1.1 presents a comparison of the extant
ambiguity detection tools against SinBAD using Basten’s set of characteristics [4].

To evaluate SinBAD I generated a large grammar corpus using grammar mutation tech-
niques. My mutation technique involves applying a single change to an unambiguous
grammar to generate a random ‘PL like’ grammar. I have devised five different type of
mutations, with which I generated a large corpus of possibly ambiguous PL-like grammars.

SinBAD validates Hypothesis H1: not only does SinBAD uncover 16% more ambiguities
than existing deterministic approaches, but it uncovers them more quickly.

SinBAD also validates Hypothesis H2: making a single change to an unambiguous PL
grammar results in 37% of the grammars becoming ambiguous.

1.4 Overall Thesis Structure

To test my hypotheses, this thesis is organised into five main parts:

1. An analysis and review of extant ambiguity detection approaches.

CHAPTER 1. INTRODUCTION 13

Tools accamb accunamb Exhaustive

YACC [24] N Y N
ACLA [10] Y Y N
AMBER [36] Y N Y
NU Test [34] Y Y N
AmbiDexter [7] Y Y Y
SinBAD Y N N

Table 1.1: A comparison of the extant ambiguity detection tools with SinBAD . An ap-
proach is considered accurate if it can definitely prove a grammar to be ambiguous (de-
noted as accamb) or unambiguous (accunamb). An ‘Exhaustive’ approach explores the
search space of a grammar in depth, and therefore, by definition, is non-terminating. Sin-
BAD ’s approach is subtly different to other approaches in that it explores a previously
untried section in the design space.

2. I present a new ambiguity detection tool, SinBAD that houses various non-deterministic
search-based heuristics for detecting ambiguities in CFGs.

3. I then present two novel ways of generating random grammars.

4. SinBAD is evaluated along with three other ambiguity detection tools in the largest
cross ambiguity detection experiment.

5. A novel grammar minimisation approach by ambiguity detection is presented.

1.5 Contributions

The main contributions of this thesis are as follows:

• The novel concept of non-deterministic ambiguity detection. I incrementally develop
a non-deterministic algorithm to detect ambiguity, showing how different design
choices affect results. The implementation of these algorithms in a tool, allowing a
large scale experiment to be carried out.

• Two novel ways of generating large grammar corpuses. The use of Boltzmann sam-
pling to generate fully random grammars (with some statistical guarantees of cover-
age). The use of grammar mutation to produce distinct grammars from an existing
set of unambiguous grammars.

• The automated experimental suite containing various grammar corpuses and the
setup for carrying out large scale evaluation.

CHAPTER 1. INTRODUCTION 14

• The novel concept of search-based grammar ambiguity minimisation.

1.6 Detailed Synopsis

Chapter 2 introduces the general concepts of parsing and parsing techniques. An intro-
duction to ambiguity in CFGs is provided. Ambiguity is explained using examples.
Several extant ambiguity detection tools are reviewed and analysed.

Chapter 3 introduces a search-based approach to ambiguity detection for CFGs. The
motivation for implementing a search-based approach is presented. I then present
the SinBAD tool. A series of gradually better non-deterministic heuristics for am-
biguity detection in CFGs is presented.

Chapter 4 presents two novel ways of generating random grammars. An introduction to
Boltzmann sampling is provided. The first Boltzmann sampler for generating CFGs
is presented. A mutation based PL grammar generator is presented. Five different
ways of mutating a PL grammar are presented.

Chapter 5 presents the dimensioning of the ambiguity detection tools from my experi-
mental suite. The chapter comes in four parts. The first part covers the experiment
methodology. An overview of the tools from my experimental suite is provided,
and grammar generation is covered. The second part presents a new hill climbing
based implementation for uncovering a ‘good enough’ solution for a given ambiguity
detection tool.

Based on my hill climbing implementation, two dimensioning experiments are per-
formed. The third part covers the crude dimensioning experiment, wherein my tools
are evaluated on a small grammar corpus to understand their solution landscape.
The fourth and final part covers the fine dimensioning experiment, wherein for each
tool, the region uncovered by crude dimensioning is explored in detail to determine
good run-time options.

Chapter 6 presents the main experiment, which evaluates my tools using the best run-
time options discovered by the fine dimensioning experiment on a much larger gram-
mar corpus. Based on the results, the strengths and the weaknesses of each tool are
discussed.

Chapter 7 presents a search-based approach to grammar ambiguity minimisation for
CFGs. The chapter starts with an introduction to my grammar minimisation ap-
proach. I then implement my grammar minimisation approach in a tool. The
grammar minimiser is then evaluated on a large grammar corpus. The chapter
concludes with a discussion.

Chapter 8 present my conclusions and provides directions for possible future research.

CHAPTER 1. INTRODUCTION 15

1.7 List of Publications

Several parts of this thesis have appeared in previous publications. The following papers
are reproduced in part or full:

1. Chapter 3 was published in the proceedings of the Second Workshop on Imperial
College Computing Student Workshop (ICCSW 2012) [39]

2. Chapter 4 was published in the proceedings of the Sixth Conference on the Software
Language Engineering (SLE 2013) [40]

Chapter 2

An Overview of Ambiguity Detection

This chapter is intended to provide the background material necessary for the work pre-
sented in this thesis. This chapter starts with an overview of the different types of gram-
mars, and the respective languages they describe. The basic concepts that underpin
parsing in programming languages are explained. An introduction to ambiguity is given,
followed by an overview of the extant ambiguity detection approaches to CFGs. The con-
cepts involving grammars and parsing are provided here for completeness. Readers who
are familiar with these concepts may wish to jump straight to the section on ambiguity 2.3.

2.1 Grammars and Languages

A grammar is a set of rules that describes the syntax of a language. Each rule defines a set
of sequence of symbols that it can generate. The rules of a grammar are applied recursively
to generate syntactically valid sentences. A sentence is defined as a sequence of words,
and a word is a symbol from the alphabet of the language. The set of valid sentences
that can be generated from a grammar is defined as the language of the grammar. An
example grammar is shown below.

A→ aB

B → b

The symbols contained in the grammar are of two kinds: terminals such as a and b that
make up the alphabet of the grammar; and non-terminals such as A and B that act as
variables that cannot occur in a sentence. To distinguish non-terminals from terminals, I
follow a simple convention: non-terminals are written using the uppercase letters, whereas
terminals are written using the lowercase letters. A rule consists of a symbol on the left-
hand side (left of→) and a sequence of symbols on the right-hand side (right of→). The
→ indicates that the symbol (i.e. non-terminal) on the left-hand side “may be replaced by”
the sequence of symbols (terminal or non-terminal) on the right-hand side of a rule. One

16

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 17

of the non-terminals of the grammar is designated as the start symbol of the grammar.
If A is designated as the start symbol, then the language (i.e. set of accepted sentences)
described by the example grammar is {ab}.

2.1.1 Formal Definition

Formally, a CFG is defined as a tuple G = 〈N,T,P,S 〉 where N is the set of non-terminals,
T is the set of terminals, P is the set of production rules (just rules from now on), and S
is the start non-terminal of the grammar. A production rule is denoted as A : α, where
A ∈ N, and α is a sequence of symbols drawn from (N ∪ T)*. A rule with an empty
right-hand side is denoted as A : ε, where ε denotes an empty string. The upper case
letters A, B, C and so on will be used to refer to non-terminals and lower case letters a,
b, c and so on will be used to refer to terminals. The upper case letters U , V , W and so
on will either refer to a terminal or a non-terminal, and greek letters α, β, γ and so on
will be used to refer to a sequence of terminals or non-terminals. For a grammar G, the
language it describes is denoted as L(G).

2.1.2 Chomsky Hierarchy of Grammars and Languages

Grammars come with varying power of expressivity. In the late 1950’s Chomsky [15]
formalised the notion of a grammar as a generative device for describing a language, and
classified grammars into different classes based on their expressive power. The languages
described by the class of grammars with higher expressive powers are a superset of the
languages described by those with lower expressive powers. I now describe the various
classes of grammars, starting from the least to the most expressive.

The least expressive class of grammars are the regular grammars. In a regular grammar,
the right-hand side of a rule can either contain one terminal or a terminal followed by a
non-terminal. The example grammar in Section 2.1 is a regular grammar.

The class of Context Free Grammars (CFGs) expand on the class of regular grammars.
CFGs remove regular grammars’ restrictions: the right-hand side of a rule in a CFG
can have an arbitrary number of symbols, and the terminals and the non-terminals can
occur appear in any order. As a result, CFGs have higher expressive power than regular
grammars, and thus describe a larger set of languages.

The set of Context-Sensitive Grammars (CSGs) expand on the set of CFGs. Whereas
in the case of CFGs, the left-hand side of a rule always contained a non-terminal, in the
case of CSGs, the non-terminal on the left-hand side can be surrounded by an arbitrary
number of symbols (terminal or non-terminal). These symbols form the context under
which the non-terminal gets replaced by a sequence of symbols on the right-hand side.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 18

A CSG rule replaces only one non-terminal from its left-hand side by its right-hand side.
An example rule in a CSG might look as follows:

aBC → abC

That is, the non-terminal B is surrounded by context a and C, and will be replaced
by terminal b only in the context of a and C. The ability to apply rules based on the
surrounding context on either side of a rule makes them useful for describing natural
languages.

The class of Unrestricted grammars expand on the class of CSGs. As the name suggests,
the rules in an unrestricted grammar allow any arbitrary (non-zero) sequence of symbols
to be replaced by any arbitrary (possibly zero) sequence of symbols. Whereas a CSG rule
allows exactly one non-terminal from its left-hand side to be replaced, an Unrestricted
grammar rule allows any number of terminals and non-terminals to be replaced. An
example rule in an Unrestricted grammar might look as follows:

ABC → aEF

That is, whenever the sequence of symbols ABC is found, replace it with sequence of
symbol aEF. Languages described by the set of Unrestricted grammars are the most
powerful in the hierarchy; the complicated structure of these grammars also means that
their use is limited mostly to theoretical purposes.

Although the class of CSGs and Unrestricted grammars are quite powerful, their use of
context for applying rules makes them them quite complex, and thus less suitable for
describing programming languages [19].

2.2 CFGs

CFGs are widely used for describing programming languages. The rules of a CFG are
typically written in a more condensed form called the Backus-Naur Form or BNF [3]. In
this thesis, I use the YACC (BNF variant) notation for writing CFGs. In a BNF notation,
a rule takes the following form:

<symbol> : <expression>

where <symbol> is a non-terminal, and <expression> consists of one or more sequences
of symbols. The sequences are separated by a vertical bar ‘|’ to indicate a choice. Each
choice on the right-hand side of a rule is called an alternative. The special symbol ‘:’ acts
as a delimiter between the label of the rule on the left and the body of the rule on the
right. The ‘:’ symbol indicates that the non-terminal on the left may be replaced by the
expression on the right.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 19

2.2.1 Generating Sentences from a Grammar

Generating a sentence from a grammar involves a sequential application of rules, starting
with the start rule of the grammar. The alternative of the start rule forms the initial
string s. A rule is applied to replace each non-terminal in the string s by its alternatives.
Such a symbol replacement is formally called a derivation step and is denoted by the ⇒
symbol. The rules are applied to the string s until there are no more non-terminals to be
replaced, and a sentence has been generated. I now explain how a sentence is generated
for the following example grammar.

root : expr;

expr : expr + expr | expr ∗ expr | num;

num : 1 | 2 | 3;

For the example grammar, the sequence of steps involved in generating the sentence 1
+ 2 is as follows. The sentence generation commences from the start rule root of the
grammar. The start string contains the non-terminal expr. The symbol expr is replaced
by the string expr + expr by applying the first alternative of the expr rule. The derivation
step involving the rewrite of the string expr as expr + expr is shown as:

expr ⇒ expr + expr

The string expr + expr is rewritten as num + expr by replacing the first non-terminal expr
by applying the third alternative of the expr rule. The string num + expr is rewritten
as 1 + expr by replacing the non-terminal num with the first alternative of the num
rule. In the subsequent steps, the remaining non-terminal expr is replaced in a similar
way, yielding the final string 1 + 2. The process of rewriting of a string, where a non-
terminal from the string is replaced by a sequence of symbols, continues until the string
contains no non-terminals. Such a string containing just terminals is called a sentence.
The intermediate string containing both non-terminals and terminals is called a sentential
form. The sequence of derivation steps in generating a sentence is called a derivation.
The derivation for sentence 1 + 2 is as follows:

root ⇒ expr

root ⇒ expr + expr

root ⇒ num+ expr

root ⇒ 1 + expr

root ⇒ 1 + num

root ⇒ 1 + 2

The above derivation is usually written in a condensed form:

root ⇒ expr ⇒ expr + expr ⇒ num+ expr ⇒ 1 + expr ⇒ 1 + num ⇒ 1 + 2

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 20

The set of sentences derived from a non-terminal A is called the language of A, L(A). The
set of sentences derived from the start symbol of a grammar is the called the language of
the grammar.

When replacing a non-terminal in a derivation step, there is often a choice: either the
leftmost or the rightmost non-terminal can be replaced. The former results in a leftmost
derivation (indicated as ⇒lm), whereas the latter results in a rightmost derivation (indi-
cated as ⇒rm). Usually one of the approaches is chosen. The derivation shown above is
a leftmost derivation.

2.2.2 Recursion

Grammars often contain rules that reference themselves. A rule that references itself is
termed recursive. A grammar is recursive if it contains a recursive rule. An example
rule that is recursive is A: Aa. A rule A: αAβ is left-recursive, if α can be derived to an
empty string in zero or more derivation steps; and right-recursive, if β can be derived to
an empty string in zero or more derivation steps.

2.2.3 Parse Tree

The derivation of a sentence can also be represented in the form of a parse tree. A parse
tree captures the syntactic structure of a sentence with respect to the given grammar.
A parse tree is usually represented as a downward facing tree with the start symbol at
the root of the tree. The interior nodes of the tree are made up of non-terminals, and
the leaf nodes are made up of terminals. Each derivation step in a sentence generation
corresponds to a node in the tree. For a derivation step where a non-terminal A is replaced
by a sequence of symbols A0 . . . An, there exists a corresponding interior node in the tree
labelled A with A0 . . . An as its child nodes. Every valid parse tree with respect to a
grammar represents a sentence. The parse tree for the sentence 1 + 2 derived using the
example grammar in Section 2.2.1 is shown in Figure 2.1.

2.2.4 Parsing Grammars

The process of constructing a parse tree for a sentence using the grammar rules is known
as parsing. Tools that execute this process are called parsers. The purpose of a parser
is to determine if the sentence can be derived with respect to the grammar whilst also
constructing a grammatical structure of the sentence. There are two basic approaches for
constructing a parse tree: top-down and bottom-up. This section presents an overview of
the top-down and the bottom-up parsing approaches.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 21

+

1 + 2

expr

root

1

num

expr

expr

2

num

Figure 2.1: The parse tree for the sentence 1 + 2 derived from the example grammar in Sec-
tion 2.2.1

.

2.2.4.1 Top-down Parsers

A top-down parser attempts to derive a sentence by performing a sequence of derivation
steps from the start rule of the grammar. A top-down parser gets its name from the way
it constructs the parse tree: nodes are constructed from the top, and as the derivation
progresses, child nodes are added to the tree. Examples of top-down parsers include LL
and GLL [19].

A top-down parser works as follows. For a given input, the top-down parser begins with
the start rule. A root node is created for the start symbol. A non-terminal is derived by
predicting one of its alternatives. The symbols of the predicted alternative then form the
child nodes of the derived non-terminal. To predict an alternative, the parser performs
a look-ahead : the next token in the input string is matched with the first symbol of the
alternative. If the first symbol of the alternative is a terminal and if the terminal matches
the input symbol, then the input symbol is read and the parser moves to the next symbol
of the rule. If the first symbol is a non-terminal, then the parser predicts the right-hand
side of the rule that the non-terminal defines. This way the parser continues to build the
parse tree until all of the input has been successfully parsed. In cases where all of the
alternatives of a rule begins with a non-terminal, the parser is forced to pick one of the
alternatives. If the alternative picked results in a failed parse, then the parser backtracks
to the point where the choice was made and picks a different alternative.

Top-down parsers are relatively straightforward to implement and the structure of the
parser closely reflects the structure of the grammar. Parsers can also be generated from
the grammar specification using a parser generator. ANTLR [32] is one such tool that
generates a top-down LL parser. Since top-down parsers perform leftmost derivation, they

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 22

cannot handle left-recursive grammars. Consider the following left-recursive grammar: S:
SA | ε; A: a. Given an input string ‘aaa. . .’ of length n, an LL(k) parser (with k being
the number of look-ahead symbols) can’t make a parsing decision when n ≥ k. After
inspecting k input tokens, it is still not clear whether we are in the middle of a sentence
(so keep applying the rule S: SA) or at the end of the sentence (so apply rule S: ε).

2.2.4.2 Bottom-up Parsers

A bottom-up parser attempts to construct a derivation in reverse, effectively deriving the
start symbol from the sentence that is being parsed. As the name suggests, in a bottom-
up parser, the leaf nodes at the bottom of the tree are constructed first, followed by the
interior nodes, and then leading up to the root of the tree. Examples of a bottom-up
parsers include LR(k) and GLR [19].

A bottom-up parser works as follows. The parser keeps reading (shifting) the input
symbols until it finds a sequence of symbols that matches the right-side of a rule. The
portion of the sentential form that matches the right-hand side of a rule is called a handle.
Once the handle is found, the string that matches the handle in the sentential form is
replaced (reduced) by the non-terminal on the left hand side of the rule. For each terminal
shifted, a leaf node in the parse tree is constructed. When a reduction is performed, a
new intermediate node is created, and the nodes labelled by the symbols are attached to
it as children. This process of shifting and reduction continues until the sentential form
contains just the start symbol and a node labelled as start symbol is created, at which
point the input has been successfully parsed.

A bottom-up parser uses a stack to determine a handle when parsing a sentence. The
symbols from the input string are read and pushed onto the stack. When the symbols on
top of the stack match the right-hand side of a rule, a reduction is performed. The symbols
matching the right hand side of a rule are popped and the corresponding non-terminal is
placed on top of the stack. When the top of the stack contains the start symbol, the input
string has been successfully parsed. I now explain bottom-up parsing using an example.

2.2.4.2.1 Bottom-up Parsing – an Example

Consider the following example grammar. The rules of the grammar are annotated by a
unique number.

(1) S : aABe

(2) A : Abc

(3) A : b

(4) B : d

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 23

Stack S Input I Action T

abbcde shift
a bbcde shift
ab bcde reduce 3
aA bcde shift
aAb cde shift
aAbc de reduce 2
aA de shift
aAd e reduce 4
aAB e shift
aABe reduce 1
S accept

Table 2.1: Bottom-up parsing: the shifts and reductions involved in parsing the sentence
abbcde using the example grammar (see Section 2.2.4.2.1).

The sequence of shifts and reductions for sentence abbcde with respect to the above
example grammar is shown in the Table 2.1. The stack S contains the shifted symbols,
the input buffer I contains the input string and T denotes the action to be performed.

We start with an empty stack S. The token a is read from the input string (I) and placed
on top of the stack S. Since there is no handle, the next token b from I is shifted on to
S. We now have a handle, since b forms the right hand side of rule 3. A reduce action is
performed, and the non-terminal A is placed on top of the stack S. This way, we continue
to shift tokens from input I, and on finding a handle, reduce. When the top of the stack
contains the start symbol S, we have successfully parsed the input string (denoted as
accept action).

Bottom-up parsers are difficult to implement by hand. Fortunately there exists parser
generators such as Bison [1] that can generate a bottom-up parser based on an input
grammar. The class of grammars parseable by a bottom-up parser is a strict superset of
the class of grammars parseable by a top-down parser. Further, bottom-up parsers handle
left recursion.

2.3 Ambiguity

Whilst every valid parse tree corresponds to a single sentence, the reverse is not guaran-
teed: a sentence can easily have more than one parse tree. If a sentence can be parsed
in more than one way with respect to a grammar, then the sentence is ambiguous. A
grammar is ambiguous if there exists a sentence derivable from the grammar that is am-
biguous. The meaning of a sentence is derived from the structure of its parse tree. A

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 24

¶ ·

expr

*

+

expr

+

1 * 3+ 2

expr

3

9 7

6

rootroot

1

num

expr

expr

2

num

expr

3

num

expr

1

num *expr

2

num

expr

expr

3

num

Figure 2.2: Ambiguous parse trees for sentence: 1 + 2 * 3. ¶ The numbers 1 and 2 are first
added, and the result is then multiplied by 3, yielding a value of 9. · The numbers 2 and 3 are
first multiplied, and the result is then added to 1, yielding a value of 7. The number in the grey
circle adjacent to a node indicate the value of the parse tree at that specific point.

sentence that can be parsed in more than one way implies that there is possibly more
than one meaning that can be associated with it. I now show how ambiguity can manifest
even in a seemingly harmless looking grammar.

For my example, I use the grammar shown in Section 2.2.1. The grammar is shown below
for convenience.

root : expr;

expr : expr + expr | expr ∗ expr | num;

num : 1 | 2 | 3;

The example grammar is quite simple, however, the rules it contains are representative of a
typical PL grammar (most PL grammars include rules related to arithmetic expressions).
A sentence that is ambiguous with respect to the example grammar is 1 + 2 * 3. The
example sentence can be parsed in two ways (see Figure 2.2). The syntactic structure
of the parse trees and their meanings are different: whereas the parse tree on the left
evaluates to 9, the parse tree on the right evaluates to 7.

From a programming language perspective, if a program can be associated with more than
one meaning, then that poses several implications for a compiler. A compiler may choose
to interpret a program differently to what the author of the program actually intended.
For instance, where there is a choice of parses, a compiler might always choose the first
parse (not the parse that the author intended); or in other cases, a compiler might fail on

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 25

a seemingly valid program, as it is expecting just one parse but got more than one. It is
therefore essential that all the sources of ambiguity are uncovered and resolved prior to
using a grammar. A realistic example involving ambiguity in a PL grammar now follows.

2.3.1 Ambiguity in a PL Grammar

To illustrate ambiguity in a PL grammar, I use a simplified version of the SQL grammar
from my experimental corpus (see Listing 2.1). The grammar contains a subset of the
expression rules from the SQL grammar, and such subsets are typical in PL grammars.
Symbols +, (,), ∗ and the symbols in uppercase letters are terminals. Symbols in lowercase
letters are non-terminals. The non-terminal sql is the start symbol.� �

1 %tokens SELECT , ID, FROM , TABLE , WHERE , STRING;
2
3 sql: select_stmt;
4 select_stmt: SELECT ID FROM TABLE WHERE expr;
5 expr: ‘(’ expr ‘)’ | expr ‘+’ product | product;
6 product: product ‘*’ term | term;
7 term: ‘(’ expr ‘)’ | STRING;� �

Listing 2.1: An Ambiguous SQL grammar

A sentence that is ambiguous with respect to my example SQL grammar is select
id from table where ‘(’ string ‘)’. The two parses for the ambiguous sentence
is shown in Listing 2.2.

Although the example grammar is fairly small with only a handful of rules and alterna-
tives, the source of the ambiguity may not be immediately obvious. The ambiguity is
contained in the substring ‘(’ string ‘)’, and originates within the first and the third
alternative of the ‘expr’ rule. The ambiguous string can be derived in two ways:

expr ⇒ (expr) ⇒ (product) ⇒ (term) ⇒ (STRING)

expr ⇒ product ⇒ term ⇒ (expr)⇒ (product) ⇒ (term) ⇒ (STRING)

In the above fragment, the first line corresponds to the parse tree ‘TREE 1’ (from List-
ing 2.2) and the second line corresponds to the parse tree ‘TREE 2’.

The ambiguous string is short, however, the two different parses that make up the ambi-
guity look far from trivial, the parses transcend multiple rules and subsets of the parses
are nested. Ambiguity in PL grammars are characterised by such nested subsets. The
parse trees contain the necessary information for the grammar author to diagnose and
resolve the ambiguity.

Techniques exist that allow a user to manually disambiguate between multiple parses
using operators such as associativity and precedences [19]. In [8], Dr. Ambiguity, a

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 26� �
1 Two different ‘‘expr ’’ derivation trees for the same phrase.
2
3 TREE 1
4 ------
5
6 expr alternative at line 5, col 7 of grammar {
7 ’(’
8 expr alternative at line 5, col 47 of grammar {
9 product alternative at line 6, col 32 of grammar {
10 term alternative at line 7, col 27 of grammar {
11 STRING
12 }
13 }
14 }
15 ’)’
16 }
17
18 TREE 2
19 ------
20
21 expr alternative at line 5, col 47 of grammar {
22 product alternative at line 6, col 32 of grammar {
23 term alternative at line 7, col 7 of grammar {
24 ’(’
25 expr alternative at line 5, col 47 of grammar {
26 product alternative at line 6, col 32 of grammar {
27 term alternative at line 7, col 27 of grammar {
28 STRING
29 }
30 }
31 }
32 ’)’
33 }
34 }
35 }� �

Listing 2.2: Example of an ambiguity in a PL grammar

parse forest1 diagnostics tool, was introduced that identifies the cause of an ambiguity
and by inspecting the different parse trees that contribute to the ambiguity, proposes
a disambiguation technique. Although such techniques manually disambiguate between
multiple parses, one can not in general know if all possible points of ambiguity have been
covered. Therefore, it is desirable to have an automated tool that would give us some
indication as to whether a grammar is ambiguous or otherwise.

1A parse forest is the set of parse trees of an ambiguous sentence.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 27

2.4 Ambiguity Detection

Over the last decade, there has been a steady stream of work trying to detect ambiguity
in arbitrary grammars, in order to bring most of the benefits of the full class of CFGs
without the disadvantages. However, it has been proven that detecting ambiguity in
a CFG is, in general, undecidable [12]. Since most CFGs describe infinite languages,
ambiguity detection approaches are therefore generally unable to guarantee that a given
grammar is unambiguous in finite time. Inevitably, this leads to design choices when
devising an ambiguity detection approach. Whilst certain ambiguity detection approaches
are accurate, they may run forever and so would require a bound (time or string length)
to be put in place. In other cases, the approaches may terminate but may report false
positives. Invariably, such design choices influence the practical usability of an approach.
A detailed comparative study of the various ambiguity detection approaches is presented
in [4]. I now present an overview of the extant ambiguity detection approaches.

2.4.1 LR(k) and LRR

LR(k) parsing [26] is a bottom-up parsing technique that makes a parsing decision based
on the next k input symbols. A parse table is central to LR(k) parsing: for each state
and for k input symbols of look-ahead, an action is provided. An action may involve
either shifting the input symbols or reducing with a grammar rule. For a given state, if
there is more than one action for k input symbols of look-ahead, then there is a conflict.
A conflict essentially means that there is no deterministic choice at a given point during
parsing. A conflict may be of type shift-reduce or reduce-reduce. The shift-reduce conflict
refers to a state where the parser cannot decide whether to shift or reduce. The reduce-
reduce conflict refers to a state where there is more than once choice of a grammar rule
for reduction. If a LR(k) parse table (without conflicts) can be constructed for a given
grammar, then the grammar is deterministically parseable for every string described by
the grammar, and therefore the grammar is unambiguous. Therefore LR(k) condition is
a powerful test for statically checking unambiguity in grammars.

The class of grammars that can be deterministically parsed using LR(k) is the class of LR
grammars. The class of LR grammars is a subset of the class of unambiguous grammars.
A bigger class of unambiguous grammars than the class of LR but still a subset of the
unambiguous class is the class of LR-Regular (LRR) grammars [23].

The parsing of LRR grammars is similar to the parsing of LR grammars but with one
notable exception. Whereas in the case of LR(k) grammars, k look-ahead symbols are
allowed to make a parsing decision, in the case of LRR grammars arbitrarily long look-
ahead is allowed to make a parsing decision. The basic idea with LRR grammars is that
the look-ahead information essential for determining the handle in any right sentential

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 28

forms can be represented as a finite number of regular sets. Parsing of LRR grammars
is a two-pass process. The first pass involves reading the input from right to left and at
each step a label is attached to certain terminals indicating the regular sets to follow. The
second pass performs the actual parsing, where an LR(0)-like parser uses the look-ahead
labels to make a deterministic choice. The class of LRR grammars are the biggest class of
grammars that has proven to be unambiguous [23]. The one major drawback with LRR
parsing is that the existence of the regular sets crucial to making a parsing decision is
not decidable [22]. As a result, LRR parsing has proven to be impractical. For practical
purposes, the class of LR(k) grammars is still the largest testable class of unambiguous
grammars.

An example grammar [10] that is unambiguous but that is neither LR(k) (nor LRR) is
shown below. The grammar describes the language of palindromes, {a(a+b)∗b, b(a+b)∗b}.

S : A

A : aAa | bAb | a | b | ε;

I now explain a shift-reduce conflict (i.e. possible source of ambiguity) using an example.

2.4.1.1 LR(1) Parse Table – an Example

My example grammar is ambiguous and is shown below. As is evident from the grammar,
the string ‘p q r’ can be parsed in two ways.

S : AB

A : p | pq
B : qr | r

The LR(1) parse table for the example grammar is shown in Table 2.2. The rows in the
parse table identify its states and the columns identify the shifting of a terminal or a
non-terminal symbol. The grammar is augmented with a special end marker symbol ‘$’
to signal the end of input (see column $ in Table 2.2). The action acc denotes the accept
action when the end of the start rule is reached. To denote the rule reduced during a
reduce action, each alternative of a given grammar is identified by a unique rule number.
For my example grammar, the rule number for each alternative is as follows:

(1) S : AB

(2) A : p

(3) A : pq

(4) B : r

(5) B : qr

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 29

state p q r $ S A B

0 s2 g2

1 s5 s4 g3

2 s6/r1 r1

3 acc

4 r3

5 s7

6 r2 r2

7 r4

Table 2.2: LR(1) parse table for the example grammar (see Section 2.4.1.1).

A shift action from state ‘X’ to state ‘Y’ when the next input token is a terminal t, has
an entry sY at row ‘X’ in column ‘t’. A reduce action involving a rule ‘N’ at state ‘X’
when the next input token is terminal t, has an entry rN at column ‘t’. A goto action
involving a non-terminal ‘N’ from state ‘X’ to state ‘Y’ has an entry gY at column ‘N’.
The accept action acc is added to the row labelled by the accept state in column $.

The grammar contains one shift-reduce conflict. In state 2, when token p has been
processed, the rules are of the form A : p r and A : p rq. If the next symbol is q, then we
can either reduce by rule 1 (r1) or by shift q, and go to state (s6). That is, LR(1) parser
is unable to make a decision on whether to shift or reduce.

2.4.1.2 Ambiguity Checking with LR(k)

Testing if a grammar is in the LR(k) class involves iteratively generating the parse table
for increasing value of k until either the unambiguity condition is satisfied or a certain time
limit is reached. If there is a value of k, for which a parse table can be constructed without
conflicts, then each string has a unique parse and thus the grammar is unambiguous.

MSTA [29] and Hyacc [13] are two such implementations of an LR(k) test. Although the
LR(k) approach is fairly simple to setup as an ambiguity checking tool, they do come
with certain drawbacks. In case of a conflict, it is unclear whether the given grammar is
ambiguous or that it is simply not LR(k). Each conflict comes with debug information
that reveal the type of conflict along with the grammar rules involved. This conflict
information is defined in terms of the state of the parse table and the multiple actions
involved for that state. The description of a conflict is driven by the parser rather than
by the grammar, and therefore the debug report is less intuitive. The main weakness of
LR(k) test is that it doesn’t provide a concrete example of ambiguity, and so it is difficult
to say for sure, if the given grammar is ambiguous or otherwise.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 30

2.4.2 Exhaustive

Exhaustive methods systematically search a grammar space to uncover an ambiguous
string. Exhaustive methods are derivation generators that generate strings systemati-
cally from the start symbol of the grammar and then check the generated strings for
duplicates. Although implementations of exhaustive methods are relatively fast, and can
check millions of strings in a few seconds, one should be aware that grammars describe
infinite languages and therefore it is impossible to definitely prove that they are unam-
biguous. Exhaustive approaches come in varying forms, from a simple brute-force search
to a more sophisticated SAT Solver. An overview of the exhaustive methods now follows.

2.4.2.1 Gorn

Gorn [18] describes a breadth first search method to ambiguity detection in CFGs. The
method involves generating strings of bounded length systematically from the start rule
of the grammar, and then checking for duplicates in the generated strings. The method
is parameterised by ‘length’ to define the level of derivation during string generation.

Gorn’s ambiguity detection method works as follows. Strings are derived from the start
symbol of the grammar. At each level of derivation, the completed and the incomplete
derivations are tracked. The completed derivations (i.e. sentences) are compared with
the previously generated sentences. If a sentence had been previously generated, then
it has more than one derivation, and the grammar is therefore ambiguous. The method
terminates on finding an ambiguous sentence. Alternatively, the method continues to
search for ambiguous sentences by exploring the current set of incomplete derivations.
Each incomplete derivation is explored by replacing each of its non-terminal by its set of
alternatives.

2.4.2.1.1 Gorn’s Method – an Example

I now describe Gorn’s ambiguity detection method using the example grammar shown
below:

S : A;

A : a | b | aA | Ab;

The grammar is ambiguous as the sentence ab can be derived in two ways:

S ⇒lm A⇒lm aA⇒lm ab

S ⇒lm A⇒lm Ab⇒lm ab

At level 0, the generated sentences include {a,b}, and the incomplete derivations in-
clude {aA,Ab}. At level 1, the incomplete derivations from level 0 are expanded. The

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 31

first derivation aA is expanded to generate sentences {aa,ab} and incomplete derivations
{aaA,aAb}. Similarly, the second derivation Ab is expanded to generate sentences {ab,bb}
and incomplete derivations {aAb,Abb}. Thus, the sentence ab has two derivations, and is
therefore ambiguous.

Gorn’s method is always correct: if a sentence is reported as ambiguous, then there
exists multiple derivations for it. If the ambiguity can be reached within a few level of
derivations (that is, if the ambiguity happens to be in the proximity of the start rule),
then the method has a good chance of uncovering it. In practice however, ambiguities
can lurk deep within a grammar and can be hard to reach. In such cases, the level of
derivation required may be too high for the method to be practical.

2.4.2.2 Cheung and Uzgalis

Cheung and Uzgalis’s (CandU) method [14] is an optimisation of Gorn’s method. The
ambiguity checking procedure uses a breadth first search with pruning to systematically
generate strings and then check for duplicates. Pruning involves excluding string patterns
that have already been explored or those that can not result in an ambiguity from fur-
ther search. Pruning reduces search space of the grammar leading to quicker ambiguity
detection.

CandU’s ambiguity checking method can be viewed as a search tree. The search for
ambiguous sentence starts from the start symbol of the grammar. The search tree is
initialised with the root node using the start symbol of the grammar. A node in the tree
is identified by a label label and a pattern set ps. The label denotes the partial sentence
that has been derived thus far, and the pattern set ps contains one or more string patterns
that is being searched. A string pattern denotes the part of the derivation that is yet
to be completed. The search from a given node is initiated by expanding each of the
pattern from its pattern set ps, starting with the leftmost pattern. A pattern is expanded
by deriving its leftmost symbol to create child nodes. Prior to expanding the patterns,
pruning is applied.

Besides the label and pattern set for each node, the search tree also maintains an additional
set, the expanded pattern set eps. The string patterns (with terminal prefixes and suffixes
removed) are stored in eps. A pattern p is excluded from future search if the non-terminal
bounded substring p̄ (i.e. the remainder of the string that is left after trimming the
terminal prefixes and suffixes) has already been expanded (i.e. p̄ ∈ eps) and additionally
if either of the following is true: p is the only pattern in ps; or p is incompatible (two
patterns are incompatible if their terminal prefixes or suffixes do not match) with all the
other patterns in the pattern set. If, after pruning, the terminal prefixes of the patterns
from the pattern set ps do not match, then the tree will split into multiple branches.
The method continues to build the search tree until a node containing identical string

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 32

patterns is reached. At this point the method is said to have found an ambiguous string,
and the search stops. I now explain CandU’s ambiguity checking method using an example
grammar.

2.4.2.2.1 CandU Method – an Example

CandU’s ambiguity checking method is explained using a simpler version of the grammar
from [14]. The grammar is shown below:

S : A;

A : cB | bC;

B : b | cbB | ccBBa;

C : c | cA | bCC;

A node is represented as <label,ps,eps>i, where label refers to the partial sentence
derived so far, ps refers to the pattern set, eps refers to the set that contains the patterns
that have already been expanded, and i refers to the node number.

The search starts with the root node <ε,{S},{}>1. Initially the string is empty ε and
since S /∈ eps, it is expanded. Expanding S, a child node <ε,{A},{S}>2 is created, with
S ∈ eps. Since A /∈ eps, it is expanded to create two child nodes <c,{B},{S,A}>3 and
<b,{C},{S,A}>4, with A ∈ eps. The sequence of expansions thus far is shown below:

<ε,{S},{}>1
<ε,{A},{S}>2
<c,{B},{S,A}>3 <b,{C},{S,A}>4

For node 3, since B /∈ ps, it is expanded to create two child nodes <cb,{},{S,A,B}>5
(by applying the first alternative of B) and <cc,{bB,cBBa},{S,A,B}>6 (by applying the
second and the third alternatives of B), with B ∈ eps. The expansion is shown below:

...
<c,{B},{S,A}>3 ...
<cb,{},{S,A,B}>5 <cc,{bB,cBBa},{S,A,B}>6

Since node 5 has a empty pattern set, it is terminated. In case of node 6, the string
pattern bB is incompatible with the other pattern cBBa as the terminal prefixes do not
match, and the non-terminal bounded string B ∈ eps, and therefore this pattern can be
excluded from future search.

The search procedure that leads up to ambiguity (i.e. the node whose ps contains two
identical string patterns) is as follows. Ambiguity is located on the branch containing
node 4. Node 4 is expanded, since C /∈ ps, it is expanded to create two child nodes
<bc,{A},{S,A,C}>7 (from first and second alternative of C) and <bb,{CC},{S,A,C}>8
(from third alternative of C), with C ∈ eps. The expansion of node 4 looks as follows:

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 33

<ε,{S},{}>1
<ε,{A},{S}>2
... <b,{C},{S,A}>4
<bc,{A},{S,A,C}>7 <bb,{CC},{S,A,C}>8

Node 7 will be terminated as A is the only symbol in ps and since A ∈ eps. For node
8, since CC /∈ eps, it is expanded by deriving the leftmost C to create two child nodes
<bbc,{C,AC},{S,A,C,CC}>9 (from first and second alternative of C) and
<bbb,{CCC},{S,A,C,CC}>10 (for third alternative of C), with CC ∈ eps. The expansion
of node 8 looks as follows:

... <bb,{CC},{S,A,C}>8
<bbc,{C,AC},{S,A,C,CC}>9 <bbb,{CCC},{S,A,C,CC}>10

For node 9, although C ∈ eps, it is not the only pattern in the ps. The patterns C and
AC are expanded to create two child nodes <bbcc,{A,BC},{S,A,C,CC,AC}>11 (from first
two alternatives of C and first alternative of A) and <bbcb,{CC,CC},{S,A,C,CC,AC}>12
(from third alternative of C and second alternative of A). The ps for node 12 contains two
identical string patterns CC, indicating an ambiguity:

<bbc,{C,AC},{S,A,C,CC}>9 ...
<bbcc,{A,BC},{S,A,C,CC,AC}>11 <bbcb,{CC,CC},{S,A,C,CC,AC}>12

The string bbcbCC therefore has two leftmost derivations:

S ⇒lm A ⇒lm bC ⇒lm bbCC ⇒lm bbcC ⇒lm bbcbCC

S ⇒lm A ⇒lm bC ⇒lm bbCC ⇒lm bbcAC ⇒lm bbcbCC

Pruning optimises the search by visiting certain repetitive string patterns only once,
and thus increasing the chances of uncovering ambiguities. CandU’s ambiguity checking
method is always correct: if a sentence is reported as ambiguous, then the sentence has
more than one derivation. Although CandU’s method reduces the search space with
pruning, the search for ambiguity is still exhaustive as the language described by most
grammars is infinite.

2.4.2.3 AMBER

AMBER [36] uses a brute-force search, whereby sentences are generated systematically
from the start rule of the grammar and then checked for ambiguity. AMBER relies on the
Earley parsing algorithm [17], a top-down parsing technique that accepts any context-free
grammar. Earley’s recogniser is turned into a sentence generator and then extended for
ambiguity detection.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 34

2.4.2.3.1 Earley Parsing

For an input sentence, the Earley recogniser starts deriving from the start rule of the
grammar. At each input position, a rule whose next symbol to be derived matches the
token, is processed. The token is consumed and for the matched rule, the working position
in the rule is advanced past the matched symbol. This process continues until the end
of the input is reached, and if the sentence is valid, then the recogniser should have
processed the start rule. In Earley parsing, the processing of a rule is denoted using
a dot notation, where the part that precedes the dot indicate the symbols that have
already been recognised and the part following the dot indicate the symbols that are to
be expected. For a rule A : α β, the notation A : α rβ denotes that α has already been
parsed and β is to be expected. Such a ‘dotted rule’ is called an item. An item is a tuple
containing a dotted rule and the input position at which the matching of the rule began.
For a rule A : α β, if the matching began at input position i, and where α has already
been recognised, the item is formally written as (A : α rβ, i).
For each input position, the recogniser constructs a set of items, called an item set. The
kernel of an item set is constructed using a scanner. For an input token t, the scanner
adds those items from the current item set for whom the dot precedes the symbol t to
the next item set. The scanning step indicates that the token t has been recognised.
Formally, the item set at input position i is denoted as S(i). If a is the next token in the
input stream, and if the current item set S(k) contains an item (A : α raβ, i), then enter
an item (A : αa rβ, i) to item set S(k+1). The rest of the item set is constructed by the
closure of the kernel. The closure is obtained by applying the predictor and the completer
steps until no new items can be added to the set.

The predictor is invoked if the symbol following the dot is a non-terminal. A new item
is added to the current item set for the non-terminal rule with the dot placed at the
beginning of the right-hand side of the rule. For a grammar containing rules A : α B

β and B : γ, if the current item set S(k) contains an item (A : α rB β, j), then item
(B : rγ, k) is added to the current set. The completer is invoked if the dot appears at the
end of a rule in an item. The item that triggered the processing of this rule is added to
the current set with the dot advanced after the non-terminal. For our example grammar,
if the current item set contains an item (B : γ r , i), then find items in S(i) of the form
(A : α rB β, j), and add (A : α B rγ, j) to the current set. The completer step indicates
that the symbol B has been processed.

2.4.2.3.2 Earley Recogniser as Sentence Generator

The Earley recogniser is turned into a sentence generator and extended to form a am-
biguity checker. When k input tokens have been processed and item set S(k) has been
constructed, items of the form (A : α ra β, i), where the dot is followed by a terminal a,

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 35

are valid continuations of the current string. The terminals are added to a list and iter-
ated over. For each terminal, the scanner constructs the next item set as if the terminal
was the input token. The closure of this item set is constructed. For each item added
to the item set, the algorithm checks for ambiguity. An ambiguity is said to have been
found if there exists items in an item set whose dotted rules match, meaning that there
exists multiple paths in deriving the current string. This procedure to extend the current
string and checking for ambiguity is recursively invoked until strings of a given length are
reached.

2.4.2.3.3 Ambiguity Characterisation

Ambiguity characterisation provides an insight into the structure of the ambiguity—the
combination of rules and alternatives that cause the ambiguity. AMBER characterises
ambiguity as conjunctive or disjunctive. An ambiguity is of type conjunctive if a string
can be split in more than one way by sequence of symbols of a single alternative. An
example grammar containing a conjunctive ambiguity is shown below:

S : AB;

A : a | ab;
B : bc | c;

In the above grammar, the sentence abc can be derived in two ways:

S ⇒ AB ⇒ abB ⇒ abc

S ⇒ AB ⇒ aB ⇒ abc

In the first case, A is derived as ab and B is derived as c, whereas in the second case, A is
derived as a and B is derived as bc.

An ambiguity is of type disjunctive if the same string can be derived from two different
alternatives of a non-terminal. A trivial grammar containing disjunctive ambiguity is
shown below:

S : A;

A : a | a;

In the above grammar, the sentence a can be derived by either of the alternative of A.

In some of the literature, a conjunctive ambiguity is also known as a horizontal ambigu-
ity, and a disjunctive ambiguity is also known as a vertical ambiguity. For consistency,
from here on, I refer to conjunctive ambiguity as horizontal ambiguity, and disjunctive
ambiguity as vertical ambiguity.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 36

2.4.2.3.4 AMBER Options

AMBER comes with a number of options to influence the search. In length mode, strings
of up to certain length are generated and checked for ambiguity. In examples mode,
strings of varying length are generated and checked for ambiguity, however, the search is
bound by the number of example strings that is checked. In ellipsis mode, non-terminals
are also considered as tokens. That is, intermediate strings where non-terminals haven’t
been fully derived yet, are also checked for ambiguity. Checking for incomplete derivations
increases the probability of detecting shorter examples of ambiguity.

2.4.2.3.5 AMBER Method – an Example

Ambiguity detection using AMBER is explained using the grammar from Section 2.4.2.2.1.
The grammar contains a horizontal ambiguity, where the sentence ‘bbccbc’ has two dif-
ferent derivations, and its substring ‘ccbc’ can be split in two ways by the sequence of
symbols ‘CC’ of the third alternative of the non-terminal ‘C’.

Table 2.3 shows the item sets constructed in deriving the sentence ‘bbccbc’. The sentence
that is currently being derived is tracked in s. For each scanned position i of s, the
corresponding item set is denoted as S(i). Each item in an item set is numbered; an item
at j in S(i) is denoted as S(i)(j). Each block of rows in the table represents an item set.
The top of each block shows the item set that is being processed, followed by the sentence
s. The bottom of each block shows the list of valid tokens vt constructed from the item
set. The tokens in vt appear in the order the items were processed. A row in the item set
represents an item.

For each item, the table shows the dotted rule it is processing, followed by the reference to
the origin set at which the rule matching began, and a comment. The comment indicates
the step that added the item to the set. A scanned item is annotated by the item in which
the dotted rule precedes the scanned terminal. A predicted item is annotated by the item
that created it. A completed item is annotated by the item whose completion triggered
the addition of the completed item, and the previous derivation of the completed item
where the dot preceded the derived non-terminal. In cases where following a valid token
didn’t result in an ambiguous string, the item sets related to those tokens are not shown
in the table; for S(1) and S(2) the item sets related to the token c have been skipped.

Item Dotted rule Origin Comment

S(0), s = ε

(1) YYSTART : r S EOF 0 start rule
(2) S : r A 0 predict from (1)
(3) A : r c B 0 predict from (2)

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 37

Item Dotted rule Origin Comment

(4) A : r b C 0 predict from (2)
vt ={c,b}

S(1), s = b

(1) A : b r C 0 scan from S(0)(4)
(2) C : r c 1 predict from (1)
(3) C : r c A 1 predict from (1)
(4) C : r b C C 1 predict from (1)

vt ={c,b}

S(2), s = bb

(1) C : b r C C 1 scan from S(1)(4)
(2) C : r c 2 predict from (1)
(3) C : r c A 2 predict from (1)
(4) C : r b C C 2 predict from (1)

vt ={c,b}

S(3), s = bbc

(1) C : c r 2 scan from S(2)(2)
(2) C : c r A 2 scan from S(2)(3)
(3) C : b C r C 1 complete from (1) and S(2)(1)
(4) A : r c B 3 predict from (2)
(5) A : r b C 3 predict from (2)
(6) C : r c 3 predict from (3)
(7) C : r c A 3 predict from (3)
(8) C : r b C C 3 predict from (3)

vt ={c,b}

S(4), s = bbcc

(1) A : c r B 3 scan from S(3)(4)
(2) C : c r 3 scan from S(3)(6)
(3) C : c r A 3 scan from S(3)(7)
(4) B : r b 4 predict from (1)
(5) B : r c b B 4 predict from (1)
(6) B : r c c B B a 4 predict from (1)
(7) C : b C C r 1 complete from (2) and S(3)(3)
(8) A : r c B 4 predict from (3)
(9) A : r b C 4 predict from (3)
(10) A : b C r 0 complete from (7) and S(1)(1)
(11) S : A r 0 complete from (10) and S(0)(2)
(12) YYSTART : S r EOF 0 complete from (11) and S(0)(1)

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 38

Item Dotted rule Origin Comment

vt ={b,c,EOF}

S(5), s = bbccb

(1) B : b r 4 scan from S(4)(4)
(2) A : b r C 4 scan from S(4)(9)
(3) A : c B r 3 complete from (1) and S(4)(1)
(4) C : r c 5 predict from (2)
(5) C : r c A 5 predict from (2)
(6) C : r b C C 5 predict from (2)
(7) C : c A r 3 complete from (3) and S(3)(2)
(8) C : b C r C 1 complete from (7) and S(3)(3)

vt ={c,b}

S(6), s = bbccbc

(1) C : c r 5 scan from S(5)(4)
(2) C : c r A 5 scan from S(5)(5)
(3) A : b C r 4 complete from (1) and S(5)(2)
(4) C : b C C r 1 complete from (1) and S(5)(8)
(5) A : r c B 6 predict from (2)
(6) A : r b C 6 predict from (2)
(7) C : c A r 3 complete from (3) and S(4)(3)
(8) A : b C r 0 complete from (4) and S(1)(1)
(9) C : b C C r 1 complete from (7) and S(3)(3)

vt ={c,b}

Table 2.3: Item sets generated by AMBER for the ambiguous sentence ‘bbccbc’. The
identical items S(6)(4) and S(6)(9) means that the derivation of ‘C: bCC’ has been com-
pleted using two different paths, thus indicating an ambiguity.

AMBER wraps the start rule with the rule YYSTART: S EOF, where YYSTART and EOF
indicate the new start symbol and the end of file symbol respectively. The search is
seeded from the new start rule. For each position of the string, item sets are created
using the scanner, predictor and the completer steps. The first token from vt is picked to
extend the current string. This process is recursively invoked until an ambiguity is found.
An ambiguity is detected when an item set contains two identical items. Items S(6)(4)
and S(6)(9) are identical, indicating that the rule ‘C: bCC’ has been completed using two
different paths. By tracing back each of the paths from these two items to the start rule,
one obtains the following two leftmost derivations for the string ‘bbccbc’:

S ⇒lm bC ⇒lm bbCC ⇒lm bbcAC ⇒lm bbccBC ⇒lm bbccbC ⇒lm bbccbc

S ⇒lm bC ⇒lm bbCC ⇒lm bbcC ⇒lm bbccA⇒lm bbccbC ⇒lm bbccbc

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 39

AMBER’s ambiguity detection algorithm is always correct: that is, if a string is detected
to be ambiguous, then it has more than one derivation. AMBER’s implementation of
exhaustive search is fast and can check millions of examples in a short time. However,
one should be aware that most grammars define infinite languages, and therefore it is
impossible to definitively prove that they are unambiguous.

2.4.3 Approximation

Whilst exhaustive methods are fairly simple to implement and are always accurate, for
practical grammars, they can run forever. If a grammar can be modified such that the
ambiguity problem becomes decidable, then the search can always finish in finite time.
Approximation methods transform the search space of a given grammar into an approx-
imated one whose search space is finite. The language described by the approximated
grammar is a superset of the original grammar, and within the approximated language,
possible ambiguities are sought. The approximations applied are conservative, in the
sense that the ambiguities that were present in the original language are also present in
the (superset) approximated language. However, the approximations may also introduce
potential ambiguities in the superset that didn’t exist in the original language. As a
result, in certain cases, approximation methods are unable to decide if the grammar is
ambiguous or otherwise.

For a given grammar, approximation methods can produce three possible outcomes: the
grammar is ambiguous, a string exists in the superset and in the original language; or the
grammar is unambiguous, the superset of the language is unambiguous, and therefore the
original language must be unambiguous; or it cannot decide, when a string is ambiguous
in the superset but not in the original.

Ambiguity Checking with Language Approximations (ACLA) and Noncanonical Unam-
biguity (NU) are two tools that detect ambiguities in grammars using approximation
methods. I now describe both these tools starting with ACLA.

2.4.3.1 ACLA

ACLA [10] is a static grammar ambiguity analyser based on the linguistic characterisation
of a grammar. In ACLA, ambiguity is defined not in terms of the grammar but in terms
of the language that the non-terminals of a grammar describe.

ACLA categorises ambiguity as vertical or horizontal. Two alternatives of a rule form
a vertical ambiguity if the intersection of their languages is not empty. Two languages
L1 and L2 are vertically ambiguous, if their intersection L1 ∩ L2 6= ∅. The sequence of
symbols of an alternative form an horizontal ambiguity if they derive a string that can
be parsed in two ways. That is, the sequence of symbols can be split in such as way that

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 40

the language described by the constituent parts overlap. For example, given a sequence
of symbols P Q, if the language of P, L(P) = {a,ab} and the language of Q, L(Q) =
{bc,c}, then the overlap of their languages L(P) ∩∨ L(Q) = {abc}. Since the intersection
and overlap properties is decidable for regular languges, ACLA transforms and extends
the original language to an approximated language, a regular superset constructed using
the Mohri and Nederhof (MN) transformation [30]. The approximated language is then
explored for horizontal or vertical ambiguity.

Formally, for a given grammar G, if the approximation results in a grammar Ĝ, then L(G)
⊆ L(Ĝ). For details on the MN algorithm, I refer to [30] I. highlight one of its key prop-
erties. Given a grammar G containing rules A: αAβ and A: γ, the MN transformation
constructs an approximated language of the form A: αjγβk, where xn indicates x appears
in succession n times. That is, the approximated language keeps track of the order of the
symbols but loses track of the fact α and β must appear in balance.

For a given grammar G, an approximated grammar Ĝ is constructed using the MN ap-
proximation strategy. Grammar G is explored systematically for vertical or horizontal
ambiguity. Each rule in G is explored for vertical ambiguity by computing the intersec-
tion between the approximated language of each of its alternatives. The approximated
language for an alternative is computed from Ĝ. For a given rule A: α | β | γ, intersection
is computed between L(α) and L(β), L(α) and L(γ), and L(β) and L(γ). For each rule
in G, its alternatives are explored for horizontal ambiguity by systematically splitting the
alternative into two parts, and computing an overlap on their approximated languages.
An alternative can be split between any two adjacent symbols. A split is denoted as ↔.
An alternative U1U2...Un containing n symbols, where Ui ∈ N ∪ T , can be split in n-1
ways starting from (U1 ↔ U2 ... Un) to (U1 ... Un-1 ↔ Un).

The approximated language of an alternative, or a sequence of symbols, is constructed by
computing the language of each of its non-terminals using the rules from the approximated
grammar. For a sequence of symbols aBc, its approximated language is computed by
deriving the non-terminal B using the rules from Ĝ. Two alternatives are potentially
vertically ambiguous if the intersection of their approximated languages is not empty. The
shortest example from the intersection is a potential vertical ambiguity. An alternative
is potentially horizontally ambiguous if an overlap of the approximated language of its
constituent parts is not empty. The shortest example from the overlap is a potential
horizontal ambiguity. The potentially ambiguous string is then verified against the original
grammar. An Earley parser is used to parse the example string; if the parse is valid, then
string is definitely ambiguous.

2.4.3.1.1 ACLA Method – an Example

ACLA’s approach to ambiguity detection is now explained using an examples. The ex-
amples cover the three possible outcomes of an ACLA run for a given grammar: ACLA is

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 41

certain that the grammar is ambiguous; ACLA is not sure if the grammar is ambiguous;
or ACLA is certain that the grammar is unambiguous.

For the example grammar shown in Section 2.4.2.1.1, ACLA found an ambiguity. The
output indicating the ambiguity is shown below. ACLA correctly identifies the vertical
ambiguity located within the third and the fourth alternatives of A (marked as A[#3] and
A[#4] respectively). Both alternatives derive the string ab.

vertical check: A[#3] vs. A[#4]
*** vertical ambiguity: A[#3] <--> A[#4]
ambiguous string: "ab"

For Grammar 2.4.2.2.1, ACLA identified two potential horizontal ambiguities but no cer-
tain ones. The output indicating the potential ambiguities is shown below. The potential
ambiguities are located within the third alternative of B and C (marked as B[#3] and
C[#3] respectively). In both cases, the shortest example computed from the overlap was
not a valid string with respect to the original grammar. In case of B[#3], the alternative
ccBBa cannot possible derive the string ccbbba (there seems to be an extra b in the mid-
dle), and quite rightly the parser failed to parse it. Likewise, in the case of C[#3], the
alternative bCC cannot derive the string bccc (there seems to be an extra c towards the
end), and so the parser fails to parse it. In such cases, where the example chosen from
the overlap or the intersection is not part of the original language, ACLA is unsure if the
grammar is ambiguous.

horizontal check: B[#3] at index 3
a_overlap: "ccbbba"
parse check: failed

*** potential horizontal ambiguity: B[#3]: "c" "c" B <--> B "a"
...
horizontal check: C[#3] at index 2
a_overlap: "bccc"
parse check: failed

*** potential horizontal ambiguity: C[#3]: "b" C <--> C
the grammar might be ambiguous, but I’m not sure...

Since ACLA’s approach to ambiguity detection is based on the linguistic properties of
the grammar, namely the intersection and overlap of languages, it is able to establish
unambiguity for grammars that are not LR(k). An example grammar that is not LR(k)
but one that ACLA detects as unambiguous is shown below. The example grammar
describes the language of even length palindromes of the form aaaa, abba, baab and so on.

S : A;

A : aAa | bAb | ε;

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 42

The grammar is not LR(k)2. The language described by aAa is a(a+b)∗a and the language
described by bAb is b(a+b)∗b. Since the two languages are disjoint, there is no vertical
ambiguity between these two alternatives, and therefore the grammar is unambiguous.
ACLA reports the example grammar as unambiguous.

2.4.3.2 Noncanonical Unambiguity

Noncanonical Unambiguity (NU) Test [34] is another approximation approach for ambi-
guity detection in CFGs. In NU Test, the grammar is first converted into a bracketed form
by introducing two distinct terminal symbols to each alternative. A derivation symbol di
is placed at the front of the alternative, and a reduction symbol ri is placed at the end of
the alternative, where i denotes a unique number for a rule, and {di, ri} /∈ T . A bracketed
grammar is always unambiguous because the terminals di and ri uniquely identify which
alternative to apply whilst parsing. If two strings from the bracketed grammar differ only
in their di and ri symbols, then the original grammar is ambiguous.

To generate strings from the bracketed grammar, a position graph is constructed. The
nodes in the position graph are positions in the strings that the bracketed grammar
generates. A position is a dotted item, where the part of the alternative that precedes the
dot has already been derived and the part that follows the dot is yet to be derived. The
edges of the position graph represent the evaluation steps in the bracketed grammar, and
is one of the following: derivation, reduction and shift. A derivation corresponds to an
entry of an alternative, a reduction corresponds to an exit of an alternative, and a shift
corresponds to a move over a symbol (terminal or non-terminal) within an alternative.
The position graph describes the same language as the bracketed grammar, and every
path through the graph corresponds to a parse tree in the original grammar.

Since the language described by programming language grammars is infinite, it is impos-
sible to analyse their position graph in finite time. To obtain a graph that is tractable
in size, the position graph is transformed to an approximated one using an equivalence
relation. NU Test applies the “item0” equivalence relation to construct the approximated
graph. The approximated graph closely resembles an LR(0) parse automaton [26], where
each node in the graph corresponds to a LR(0) item, and the edge corresponds to an ac-
tion. For a grammar with rules A : αBβ, B : γ, C : Bc identified by rule number i, j, and
k respectively, the following three types of transitions are allowed in the approximated
graph:

• A derivation transition of the form A : α rBβ 〈j−→ B : rγ, where 〈j−→ indicates the
rule j being derived.

2For a LR(k) parser, with k look-ahead tokens, for a sentence of length > k, when the current state
contains a rAa, after inspecting the next k symbols, there is not a clear choice: a reduce is possible using
rule A: ε; or a shift is possible using rule A: aAa.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 43

• A reduction transition of the form B : γ r 〉j−→ A : αB rβ, where 〉j−→ indicates the rule
j being reduced.

• A shift transition of the form A : α rBβ B−→ A : αB rβ, where B−→ indicates non-
terminal B being shifted.

The derivation and the shift transitions in the approximated graph are similar to those
that occur in an LR(0) automaton. The reduction transition however is different: whereas
in a LR(0) automaton, a move is made to a state depending on the reduced non-terminal
and the state at the top of the parse stack, in an approximated graph there are reduction
edges for every item that has the dot after the reduced non-terminal. For our example
grammar, the LR(0) automaton in state A : α rBβ will move to state A : αB rβ when
the non-terminal B is reduced. That is, the automaton will go back to the state from
where the derivation of the reduced non-terminal started. In the case of the approximated
graph, however, the derivation transition A : α rBβ can have a non-matching reduction
C : αB rc. The approximated graph makes it possible to parse the initial part of the
string with a rule and then reduce the remaining part of the string with a different rule.
Thus, the language described by the approximated graph is a superset of the language
described by the original position graph.

To find possible ambiguities, the item0 position graph is traversed using two cursors
simultaneously. If the two cursors take different paths through the position graph but shift
the same set of tokens, then we have identified a possible ambiguity. Stated differently, if
two paths differ only in their di and ri symbols, then the original grammar is ambiguous.
An efficient representation of all such simultaneous traversals is a Pair Graph (PG). The
nodes of a PG represent the pair of cursors into the item0 graph. The edges in a PG
represent the (derive, shift, or reduce) transitions traversed by the cursors. A path in a
PG thus describes two potential parse trees of the same string. If the two paths are not
identical, then such a path in PG is called an ambiguous path pair. An ambiguous path
pair denotes a potential ambiguity.

Since the approximated language is a superset of the original, there are potentially am-
biguous strings—that is, ambiguous strings that are part of the approximated language
but not the original. Thus, an approximated approach never reports false negatives but
may report false positives.

2.4.4 AmbiDexter

AmbiDexter [7] uses an hybrid approach by marrying approximation techniques with
exhaustive search. AmbiDexter first applies the NU Test to filter out every subset of the
grammar that is proven to be unambiguous, before searching exhaustively on the result.

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 44

AmbiDexter extends the NU Test to identify rules that are unambiguous. A rule is
considered unambiguous if it is not referenced in the ambiguous subsets of a grammar.
The uncovering of the unambiguous rules of a grammar is based on the pair graph (PG)
constructed by the NU Test. A rule is defined to be unambiguous if its position items do
not belong to any of the ambiguous path pairs in a PG. The set of ambiguous path pairs
in a PG is an over-approximation of the parse trees of ambiguous strings. Therefore, an
alternative that is not referenced in the approximated set also means that it is certainly
not used by the parse trees from the original grammar. Once the unambiguous rules have
been identified, they are pruned from the PG, and resulting grammar contains only the
rules that are potentially ambiguous.

The heuristic to prune a PG is as follows:

• From the set of all pairs in the PG, remove pairs that are not part of any ambiguous
path pair.

• For an alternative to be ambiguous, all of its position items have to be used. Identify
alternatives in PG where at least one of its items is not part of any ambiguous path
pair. From each of the alternatives identified, all pairs that contain the alternatives’
items can be safely pruned from the PG. This then triggers further pruning. All the
dead ends and unreachable sections of the PG is further pruned.

• Consider that any path in the item0 graph that describes a valid parse tree of the
original grammar must both derive and reduce every alternative that it uses. That
is, for every derive 〈i transition from A : α rBβ to B : γ, there should be a matching
reduce 〉i transition from B : β to A : αB rβ, and vice versa. Therefore, any cases
where a derive transition is not matched by a corresponding reduce transition, and
vice versa, then those transitions can be safely pruned from PG. After removing the
invalid transitions, further pruning can be performed.

The pruning process is repeated until there are no further invalid paths to be removed
from the PG. At the end of the pruning process, the alternatives that are left over are con-
sidered to be potentially ambiguous. Post pruning, two further refinements are performed.
First, any non-terminals that are unreachable from the start rules are considered to be
unambiguous, and are pruned. Second, for those non-terminals for which all the alterna-
tives have been pruned, but are still referenced by other non-terminals, their productivity
is restored. For each of those non-terminals, a new alternative containing a terminals only
string is constructed from the shortest possible derivation of the non-terminal from the
original grammar.

In addition to the LR0 approximation, AmbiDexter provides several other approximation
filters, namely, SLR1, LALR1, and LR1. The filters come with varying precision: LR0
(low) to LR1 (high). The more powerful a filter is, the greater the portion of a grammar

CHAPTER 2. AN OVERVIEW OF AMBIGUITY DETECTION 45

it can filter out, but the longer it takes to do so. AmbiDexter has two modes of sentence
generation: searching for sentences up to fixed lengthN , or searching for sentences from an
initial length N to∞. Although hybrid approaches perform better than their constituent
approaches, they still rely on an exhaustive search, albeit on a smaller state space.

2.5 Summary

In this chapter, I first provided an overview of the different types of grammars and the
languages they describe. I then introduced the basic concepts of parsing and parsing
techniques. An introduction to ambiguity was given followed by an example of how
ambiguity manifests in programming language grammars. I ended the chapter with a
discussion on some of the extant ambiguity detection approaches to CFGs.

Chapter 3

Search-Based Ambiguity Detection

This chapter presents SinBAD : a breadth-based implementation for ambiguity detection
in CFGs. The extant ambiguity detection approaches are deterministic and explore a
grammar in ‘depth’. By depth I mean that subset of grammar space is exhaustively
searched. My hypothesis is that approaches that explore a grammar in ‘breadth’ have a
greater chance of discovering ambiguity. By breadth I mean that the search space of a
grammar is covered as much as a possible without focussing on any specific subset of the
grammar. To that end, I have created a number of breadth-based heuristics for detecting
ambiguities in grammars.

In this chapter, I first start with a comparison between depth-based and breadth-based
approaches to ambiguity detection in CFGs. A case study is presented to demonstrate
why depth-based approaches fail for certain grammars. I then present my breadth-based
approach to ambiguity detection. A series of non-deterministic heuristics for ambiguity
detection in grammars is presented. I start with a simple heuristic and then incrementally
improve the heuristic to obtain higher quality results.

3.1 Depth-based Approach

A depth-based approach detects ambiguities by exploring a subset of a grammar in ex-
haustive detail. Since the search space of the language of a grammar is infinite and a
depth-based approach exhaustive, the search has to be restricted in some ways. A bound
is put in place for the exhaustive approaches to terminate. For instance, the search is re-
stricted to explore strings of up to a certain length or is restricted to explore only certain
subsets of the grammar. Two such ambiguity detection methods that search by depth
include: AMBER [36] and CandU’s method [14].

AMBER (see Section 2.4.2.3) detects ambiguities by systematically generating strings
from the start rule of the grammar and then checking for duplicates. In AMBER, the
search is restricted either by the string length or by the number of examples checked.

46

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 47

CandU’s method detects ambiguities by generating strings of bounded length. Searching
exhaustively on a subset of a grammars’ search space means depth-based approaches
perform quite well in detecting ambiguities within the subset focussed but not so well
outside it. I now explain how a depth-based approach misses out on detecting a fairly
trivial ambiguity using an example.

3.1.1 Why Depth-based Approaches Sometimes Fail?

Using the AMBER tool, I now illustrate on why depth-based approaches fail to detect
ambiguity in certain cases. For my example, I invoke AMBER to search by examples on
the altered Pascal grammar from Basten’s grammar collection [5]. The example grammar
contains the classic nested if else ambiguity. The relevant subset of the Pascal grammar
in shown below:

1 program: PROGRAM IDENTIFIER external_files ’;’ block ’.’ ;
2 external_files: | ’(’ ident_list ’)’ ;
3 ident_list: IDENTIFIER | ident_list ’,’ IDENTIFIER ;
4 block: opt_declarations compound_stmt ;
5 opt_declarations: | declarations ;
6 declarations: declaration | declarations declaration ;
7 declaration: proc_dec | var_dec | type_dec | label_dec | const_dec ;
8 compound_stmt: SBEGIN statements END ;
9 statements: statement | statements ’;’ statement ;

10 statement:
11 | WITH rec_var_list DO statement
12 | FOR ident BECOMES expression direction expression DO statement
13 | REPEAT statements UNTIL expression
14 | WHILE expression DO statement
15 | IF expression THEN statement
16 | IF expression THEN statement ELSE statement
17 ...
18 ;

In the above grammar, upper-case symbols are terminals, and lower-case symbols are
non-terminals. An experienced human will realise that lines 15 and 16, which represent
different IF statements (often referred to as the ‘dangling else’ problem), cause an ambi-
guity. However, even if run for a significant time (more than an hour), AMBER doesn’t
detect ambiguity on the above grammar. AMBER is unable to detect the ambiguity due
to its ‘distance’ from the start rule.

When AMBER is invoked, it starts generating sentences from the start rule of the gram-
mar. Each of the alternatives of the start rule is explored systematically. An alternative is
explored by expanding each of its non-terminals. Each of the non-terminals is then further
explored by searching the rules it references exhaustively. This way AMBER continues to
explore a grammar in depth by systematically exploring a subset of the grammar rules.
If the source of the ambiguity is located near the head of the grammar, then AMBER
has a good chance of detecting it. On the other hand, if the source of ambiguity is nested
deep within the grammar (i.e. if the source of ambiguity is far away from the head of the
grammar) then AMBER is less likely to detect it.

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 48

Running through the sequence that AMBER runs through is instructive. AMBER starts
by expanding the program rule, and exploring each of its non-terminals. It then explores
the non-terminal external_files by deriving a sequence of IDENTIFIERs (note that
AMBER naturally limits recursion by the overall limit on sentence length). The non-
terminal block is expanded by deriving a sequence of declarations and statements. The
non-terminal declaration is expanded by exploring each of its five alternatives. Likewise
the non-terminal statement is expanded by exploring each of its alternatives. By this
point in the exploration, an infinite number of combinations could have been explored
(because of recursion); even when recursion is bounded, the number of combinations is
vast. AMBER’s systematic and exhaustive search of each of the non-terminal referenced
means that it has little chance of getting far enough into these combinations to find this
ambiguity.

3.1.2 Breadth-based Approach

Whereas a depth-based approach covers a subset of the grammar in exhaustive detail, a
breadth-based approach aims for grammar coverage. The search space of a grammar is
explored as much as possible without delving into its specific subsets. By focussing less
on any individual part, the search has a better chance of exploring the grammar more
equally, potentially increasing the chances of uncovering ambiguity.

The search space of a grammar is defined by the language it describes. Since, for most
practical purposes, the language described by a grammar is infinite, detecting an ambigu-
ity within a grammars’ language is an impossible task. Therefore, to give myself the best
possible chance of finding an ambiguity, I aim to maximise grammar coverage by visiting
as many of a grammars’ rules and alternatives as I can, without focussing on any of its
individual part in exhaustive detail.

Search-based techniques are known to perform reasonably well in finding ‘good enough’
solutions for problems whose search space is too big to be exhaustively scanned. Search-
based techniques use heuristics that allow them to guide the search in seeking good enough
solutions. In the following section, I provide an overview of the search-based techniques.

3.2 Search-based Techniques

In engineering disciplines, one often considers problems that involve large search spaces
where finding a perfect solution is either theoretically impossible or practically infeasible.
Such problems are often characterised by a search space where there is no perfect answer
but one where there exist potentially many good solutions. Often the best we can hope
for is a ‘good enough’ solution (i.e. one that falls within an acceptable tolerance), and it
is precisely this characteristic that makes search-based techniques readily applicable to

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 49

Sentence

Generator

Grammar

artefacts

Sentence
Earley

parser

Parsed

output Yes

No

No

StopAmbiguous?

 Time

exceeded?

<Backend 1>

<Backend 2>

<Backend n>

uses

Yes

Stop

Figure 3.1: SinBAD

problems in engineering. As such, many problems in engineering have been adapted and
successfully formulated as a search-based optimisation problem [21].

Search-based techniques seek ‘good enough’ solutions using a variety of algorithms. The
simplest form of a search-based technique is a random search. A random search does
not use a fitness function, and is thus unguided. The search-based techniques that use
fitness function fall into two categories, local search and global search. Local searches
operate with one candidate solution, and make moves based on the neighbourhood of
that candidate solution. Local searches seek the best solution in the local neighbourhood.
Local search techniques include hill climbing, simulated annealing, and tabu search. On
the other hand, global searches operate by sampling many solutions in the search space all
at once. Global searches seek the best solution (i.e. global optimum) in the search space.
An example of a global search technique is genetic algorithms. For a given problem, a
local search is applied first to understand the solution landscape before exploring a global
search. Since this is the first time search-based techniques have been applied for detecting
ambiguities in CFGs, I opt for the simplest form of search-based technique, random search.

3.3 SinBAD

To apply search-based techniques for detecting ambiguities in grammars, I created Sin-
BAD , a simple tool which houses a number of pluggable ambiguity detection approaches.
My ambiguity detection approaches are non-deterministic, and are intended to explore a
grammar in breadth rather than depth. The algorithms are extremely simple, with the
core of each explained in less than a page. Despite the simplicity of these algorithms,
experimental results show that they perform at least as well as, and generally better
than, more complex deterministic approaches. Furthermore, good results are found more
quickly than by previous approaches.

Figure 3.1 shows SinBAD ’s architecture. Given a grammar and a lexer, the Sentence
Generator component generates random sentences using a given backend. A backend,

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 50

in essence, is an algorithm that governs how sentences are generated. For instance, a
backend can use a unique scoring mechanism to favour an alternative when expanding
a non-terminal, or one that can generate sentences of bounded length. The generated
sentence is then fed to a parser to check for ambiguity (I use ACCENT [35], a fast Earley
parser for this). The search stops when an ambiguity is found or when a time limit is
exceeded.

3.4 Definitions

Before presenting my algorithms and descriptions, I first introduce some brief definitions
(mostly standard) and notations.

A grammar is a tuple G = 〈N,T,P,S 〉 where N is the set of non-terminals, T is the set
of terminals, P is the set of production rules over N × (N ∪ T)* and S is the start non-
terminal of the grammar. A ‘symbol’ is either a non-terminal or a terminal. A grammar
rule is denoted as A : α, where A ∈ N, and α is a sequence of strings drawn from (N∪T)*.
For a given non-terminal A, the function R(A) returns the rule associated with A. For
a rule r, its alternatives are denoted as r.alts. For a given alternative alt, |alt| denotes
the number of symbols it contains. For a grammar G, its size is defined as the number of
non-terminals, size(G) = |N |.

A sentence is defined as a string that has been derived from the start symbol S of the
grammar and is composed of only terminals. Formally, a sentence is defined as a string
over T *. A sentence is ambiguous if it can be parsed in more than one way. A grammar
is ambiguous if there exists a sentence which is both accepted and ambiguous.

Given a list l, the function rand(l) returns a random element from l. The function
rand(0, 1) returns a random floating point number between 0 (including) and 1 (exclud-
ing). For a list l, and item v, the function append(l, v) appends v to l. Given a list l, the
function enum(l) enumerates the elements in l and returns a list of pairs, with each pair
of the form (i,v), where v is the value from l at index i. For a given list l, the function
join(l) returns a string by concatenating the elements from l with a single space. Given a
list of numbers l, the function min(l) returns the minimum value from l.

For a set s, the function len(s) returns the length of the set s. For a given set s and an
item v, the function remove(s, v) removes the item v from s. For a given object o, the
function copy(o) returns a deep copy of the object o.

3.5 Search-based Backends

SinBAD houses several types of backends, ranging from purely random to heuristic driven,
each of which generates a string by walking over a grammar and generating a string from

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 51

Algorithm 1 Algorithm to generate a sentence using the purerandom backend
1: function start(G)
2: sen← []
3: generate(G, R(S), sen)
4: return join(sen)

5: end function

6: function generate(G, rule, sen)
7: alt← rand(rule.alts)

8: for sym in alt do
9: if sym ∈ N then
10: generate(G, R(sym), sen)
11: else
12: append(sen, sym)

13: end if
14: end for
15: end function

it. It is important to note that, by definition, this means that all backends always generate
a valid sentence with respect to the grammar. Whilst in a random backend, sentences are
generated by picking alternatives randomly, heuristic driven backends choose alternatives
semi-randomly, with a bias towards certain alternatives. In the following subsections, I
first explain purerandom – the simplest backend – before explaining the heuristic driven
backends.

3.6 Purerandom

In the purerandom backend, sentences are generated by picking alternatives randomly.
Algorithm 1 describes how a sentence is generated using the purerandom backend. The
function START is initialised with a grammar G. The sentence sen is initialised with an
empty list. Sentence generation is initiated from the start rule R(S) of the grammar
(line 4). For a given rule rule, one of its alternatives is randomly selected (line 7). For
each non-terminal symbol sym from the selected alternative, the function GENERATE
is invoked recursively (line 11). The generated sentence sen is returned as a string when
the function GENERATE unwinds from recursion.

Despite purerandom’s simplicity, it uncovers 52% of ambiguities on my experimental cor-
pus. In a small experiment1 performed on 5303 grammars from my grammar suite for a
time limit of 10s, purerandom uncovered 1822 ambiguities. However, it has a significant
problem which is that it often continues recursing ever-deeper into the grammar without

1Test results can be downloaded from: https://figshare.com/s/7c86e867ec225a475a13

https://figshare.com/s/7c86e867ec225a475a13

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 52

unwinding, thus leading to non-termination. The results from my small experiment show
that 87%2 of the grammars failed to terminate. For my small experiment, the pureran-
dom backend was restarted if it ran into recursion but the time limit still applied. I now
explain how purerandom runs into non-termination using an example.

3.6.1 Non-termination in purerandom– an Example

To demonstrate the non-termination issue with purerandom, I use the SQL grammar from
Section 2.3.1. For convenience, it is shown below.� �

1 %tokens SELECT , ID, FROM , TABLE , WHERE , STRING;
2
3 sql: select_stmt;
4 select_stmt: SELECT ID FROM TABLE WHERE expr;
5 expr: ‘(’ expr ‘)’ | expr ‘+’ product | product;
6 product: product ‘*’ term | term;
7 term: ‘(’ expr ‘)’ | STRING;� �

Listing 3.1: An Ambiguous SQL grammar

In case of my example SQL grammar, for the expr rule, 2 of the 3 alternatives are
recursive. Because each alternative has an equal chance of being picked, this tends to lead
to non-termination with purerandom. In a tiny experiment performed, where purerandom
was invoked on the example SQL grammar, 39 out of 50 executions failed to terminate.

My implementation relies on the value of recursion limit set by the underlying stack.
The recursion limit3 for my Python interpreter stack is set to 1000. Running the ex-
ample grammar with the recursion limit set to a much higher value only leads to much
deeper recursive calls and delays the non-termination problem. Running the example
SQL grammar with recursion limit set to 10000 resulted in 35 of the 50 executions failing
to terminate (restarts were allowed on reaching recursion limit). It is possible to convert
the current recursive implementation for sentence generation to a iterative one, by using
a stack. During sentence generation, the alternatives (and the pointer within them) that
are currently in process can be held in a stack. The stack can then be iteratively processed
to generate a sentence. The stack based implementation is likely to resolve the issue with
recursion, however it may lead to other issues, such as the underlying interpreters’ VM
running out of heap space.

24922 grammars failed to terminate.
3The default recursion limit in Python is 1000.

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 53

3.7 Heuristic Based Backends

The purerandom backend showed me that a random approach has promise, but since it is
subject to non-termination, it can never be viable. Therefore, the real challenge is to find
a sensible means of ensuring that sentence generation terminates. To that end, I have
devised a number of heuristic driven backends. The core of my heuristic based backends
is essentially the same; the difference lies in the approach used by each backend to address
the issue with the non-termination.

A heuristic based backend generates sentences by picking alternatives randomly in gen-
eral, but occasionally picking them semi-non-randomly in order to encourage sentence
generation to terminate. That is, whilst generating a sentence, when the heuristic has
recursed ‘sufficiently deep enough’ into the grammar, certain alternatives are favoured to
encourage termination. Therefore, a heuristic based backend is parameterised by a user-
configurable integer D4. Once the algorithm has recursed beyond depth D, alternatives
are favoured.

Each of my heuristic based backends is specific in its approach to how it picks alterna-
tives for favouritism. My approaches vary from using a simple scoring mechanism where
alternatives are assigned scores based on how quickly they can be derived, to a more
sophisticated mechanism where alternatives that generate strings of bounded length are
picked semi-deterministically. In devising these approaches, I have followed a simple con-
vention: I start with a base heuristic and then look to improve it, fixing any obvious flaws,
to create new heuristics. Further, exploring various approaches that are spread across the
design space, allows me to understand the strengths and weaknesses of each of them. I
now describe each of my heuristic based backend, starting with dynamic1 .

3.7.1 The dynamic1 Backend

Picking alternatives purely randomly leads to non-termination. dynamic1 mitigates this
issue by sometimes favouring alternatives which it believes are likely to encourage termina-
tion. The favouring of alternatives is triggered when the depth of recursion has exceeded a
threshold D. If a rule has an alternative with only terminals (which will clearly terminate
immediately), that is picked non-deterministically. If all alternatives contain at least one
non-terminal, the alternatives are scored and the alternative with the lowest value picked.

The scoring mechanism is based on two counts for each non-terminal. During sentence
generation, as I recurse into the grammar, I keep track of the number of times each non-
terminal has been entered and exited. Based on these two counts, a non-terminals’ score is
defined as the number of incomplete derivations (i.e. (number of times entered)-(number

4Setting D to ∞ provides equivalent behaviour to the naive non-terminating approach.

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 54

Algorithm 2 Algorithm to generate a sentence using the dynamic1 backend
1: function start(G, D)
2: for A in N do
3: R(A).entered = R(A).exited = 0

4: end for
5: sen← []
6: generate(G, R(S), sen, d=0, D)
7: return join(sen)

8: end function

9: function generate(G, rule, sen, d, D)
10: d← d+ 1

11: rule.entered ← rule.entered + 1
12: if d > D then
13: scores← []
14: for alt in rule.alts do
15: scorealt ← calc-alt-score(G, alt)
16: append(scores, scorealt)

17: end for
18: alt← favour-alternative(G, rule, scores)
19: else
20: alt← rand(rule.alts)
21: end if
22: for sym in alt do
23: if sym ∈ N then . If sym is a non-terminal
24: generate(G, R(sym), sen, d+1, D)
25: else
26: append(sen, sym) . Build sentence
27: end if
28: end for
29: rule.exited ← rule.exited + 1
30: d← d− 1

31: end function

of times exited)) divided by the times entered. The lower the score, the more suggestive
that the rule is quick to derive; conversely the higher the score, the more suggestive that
the rule is slow to derive. The score of an alternative is calculated as the sum of the score
of each of its constituents’ symbol (with terminals being scored as 0).

Algorithm 2 describes the dynamic1 backend. The function START is initialised with a
user-defined grammar G, and a threshold depth D, a depth beyond which alternatives are

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 55

Algorithm 3 dynamic1 ’s algorithm to calculate the score of an alternative
1: function calc-alt-score(G, alt)
2: score← 0

3: for sym in alt do
4: if sym ∈ N then . If sym is a non-terminal
5: if R(sym).entered > 0 then
6: scoresym ← 1 - R(sym).exited/R(sym).entered
7: score← score+ scoresym

8: end if
9: end if
10: end for
11: return score
12: end function

favoured. For each rule rule, two counts are recorded: the number of times it has been
entered (rule.entered) and the number of times it has been exited (rule.exited). These
two counts are initialised to 0 (lines 2–4). The function GENERATE is invoked to start
sentence generation from the start rule R(S) of the grammar, with d=0 (line 6).

Given a rule rule, the function GENERATE continues to pick alternatives randomly (line
20) until the heuristic has recursed beyond the threshold depth D. When the sentence
generation has recursed beyond D, alternatives are favoured. For each alternative alt
of the rule rule, the function CALC-ALT-SCORE is invoked to calculate its score (line
15). scores, containing the scores of the alternatives for rule is then fed to the function
FAVOUR-ALTERNATIVE to favour an alternative (line 18).

The score of an alternative is the sum of the scores of its constituent symbols. Algorithm 3
shows how the score for an alternative is calculated for a given grammar G and an alterna-
tive alt. The score of the alternative score is initialised as 0 (line 2). For each non-terminal
symbol sym of the alternative, if sym has already been visited (i.e. if R(sym).entered >
0), then the sym’s score is calculated as the ratio of the number of incomplete derivations
divided by the number of times it has been entered (lines 5 and 6). The score of the sym
is then added to the score of the alternative (line 7). score is returned as the score of the
alternative.

Given a rule, once the score of its alternatives are calculated, the favouritism returns the
alternative with the lowest score. In the case of a tie, one of the low scoring alternatives
is randomly picked.

Algorithm 4 describes how dynamic1 favours low scoring alternatives for a given grammar
G, rule rule, and scores containing the scores of the alternatives of rule rule. The lowest
score scoremin from scores is calculated. Alternatives with the lowest score are identified
and recorded in altsmin (lines 4–7). One of the low scoring alternatives from altsmin is

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 56

Algorithm 4 The dynamic1 favour alternative algorithm
1: function favour-alternative(G, rule, scores)
2: scoremin ← min(scores)
3: altsmin ← []
4: for i,alt in enum(rule.alts) do
5: if scores [i] = scoremin then
6: append(altsmin , alt)
7: end if
8: end for
9: return rand(altsmin)

10: end function

then randomly picked (line 9).

dynamic1 ’s favouring of low scoring alternatives naively means that in certain cases, it fails
to terminate. In a small experiment5 performed, where 5603 grammars were evaluated,
sentence generation did not terminate on 4% of the grammars. My grammar corpus
for the small experiment contained 3300 Boltzmann (see Section 4.1) and 2303 mutated
grammars (see Section 4.2). dynamic1 was run with D=9 for the Boltzmann grammars
and D=22 for the mutated grammars. The value of D for each grammar set were the best
performing values for the dynamic1 backend from the fine dimensioning experiment (see
Section 5.11). dynamic1 failed to terminate on 211 Boltzmann and 6 mutated grammars.
This is due, in an unintended irony, to the one deterministic part of dynamic1 : the
favouring of alternatives. When the favouring of alternatives is triggered, alternatives are
scored, and one of the low scoring alternatives is then picked semi-deterministically. If
one alternative always has the lowest score, then it will be picked every time. In certain
cases, picking the same set of alternatives leads to recursive cycles. I now explain how
dynamic1 ’s favouring of alternatives leads to recursive cycles for an example grammar.

3.7.1.1 Non-termination in dynamic1 – an Example

For a given grammar, if there exists two non-terminals A and B, where the low scoring
alternative of A’s rule references B, and the low scoring alternative of B’s rule references
A, then this leads to recursive cycles. dynamic1 ’s issue with non-termination is explained
using an example grammar6 from my experimental corpus. For my example grammar,
symbols starting with TK_ are terminals, and the rest are non-terminals. The relevant sub-
set of the example grammar that contributes to non-termination is shown in the following
fragment:

5Results can be downloaded from: https://figshare.com/s/0f73a2b0c4d94f36223a.
6https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/11/2.acc

https://figshare.com/s/0f73a2b0c4d94f36223a
https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/11/2.acc

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 57

D : NXLPR SUHVQ TK_HHUC;

NXLPR : TK_JSI | SUHVQ | CUEV SUHVQ | YRH TK_AWYYX;

YRH : OZZ;

OZZ : TK_HHUC D TK_HWMU TK_LCTO D | TK_HWMU YRH;

(3.1)

For the example grammar, whilst the sentence generation is in progress, if at a given
point of time, when d < D (d is the current depth of the recursion from Algorithm 2),
the number of times entered and exited for all of the rules – D, NXLPR, YRH, and OZZ – to
be 0 and 0 respectively.

Since d < D, for a given rule, alternatives are picked randomly. If rule D is entered, its
only alternative is selected. Subsequently, the rule NXLPR is entered, and is expanded. The
random selection picks the last alternative ‘YRH TK_AWYYX’. The rule YRH is expanded by
picking its only alternative ‘OZZ’. If at this point, d > D (line 12 in Algorithm 2), then the
favouring of the alternatives is triggered. Since each of the symbol ‘D’, ‘NXLPR’, and ‘YRH’
has been entered once but not exited, their score will be 1. The score of the first and the
second alternative of rule OZZ then becomes 2 and 1 respectively. Since dynamic1 ’s scoring
mechanism always favours the low scoring alternatives, the second alternative ‘TK_HWMU
YRH’ will get picked. Deriving ‘YRH’ will lead us back to the rule OZZ. Since none of the
derivations of ‘D’ and ‘YRH’ are complete yet, the scores of the alternatives of rule OZZ
remain unchanged. For rule OZZ, the second alternative ‘YRH TK_AWYYX’ is picked again.
Thus, the sentence generation enters a recursive cycle where the YRH’s only alternative
‘OZZ’ and the OZZ’s second alternative ‘TK_HWMU YRH’ are picked in a cyclic fashion.

For a sentence generated from the above example grammar, where dynamic1 (run with
D=10) ran into non-termination, the output of the sentence generation is available for
download from: https://figshare.com/s/60ee866be4629e3a1e06.

For the above grammar, for the sentence generation to unwind from recursion, for rule
OZZ, its first alternative needs to be picked. But because dynamic1 scores its alternatives
based on the aggregated score of all of its symbols, the first alternative always ends up with
a high score, and is thus not favoured. Stated differently, dynamic1 ’s scoring mechanism
is biased towards alternatives with fewer non-terminals. A possible solution is to score
an alternative, not based on the aggregated score of its symbols but on the individual
score from one of its symbols. This then allows a fair comparison between alternatives
containing varying number of non-terminals for a given rule. I now explore this idea in
my next backend.

3.7.2 The dynamic2 Backend

When applying favouritism, picking alternatives with fewer non-terminals often leads
to non-termination. The motivation for the dynamic2 backend is to mitigate the bias

https://figshare.com/s/60ee866be4629e3a1e06

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 58

Algorithm 5 dynamic2 ’s algorithm to calculate the score of an alternative
1: function calc-alt-score(G, alt)
2: scoremax ← 0

3: for sym in alt do
4: score← 0

5: if sym ∈ N then . If sym is a non-terminal
6: if R(sym).entered > 0 then
7: score← 1−R(sym).exited/R(sym).entered
8: end if
9: end if
10: if score > scoremax then
11: scoremax ← score
12: end if
13: end for
14: return scoremax

15: end function

towards picking alternatives with fewer non-terminals when applying favouritism. To
give alternatives with higher numbers of non-terminals an equal chance of selection when
applying favouritism, I apply a small tweak to dynamic1 ’s scoring mechanism. Instead of
defining an alternative’s score to be the aggregate of its non-terminal’s scores, I define an
alternative’s score to be that of the highest non-terminal.

Algorithm 5 describes how the score of an alternative is calculated in dynamic2 for a
given grammar G and an alternative alt. The alternative’s score starts as 0 (line 2).
The algorithm then iterates over each non-terminal symbol sym. If the non-terminal
has already been visited (i.e. R(sym).entered > 0), then sym’s score is calculated as the
number of incomplete derivations divided by the number of times the rule is entered (lines
6 and 7). If sym’s score is higher than the alternative’s current score, then the latter is
updated to the former (lines 10 and 11).

Although the dynamic2 scoring mechanism mitigates the bias towards picking alternatives
with fewer non-terminals, it still runs into non-termination on a tiny number of cases. In
a small experiment7 performed, where 5603 grammars were evaluated, whereas in the case
of dynamic1 4% of the grammars did not terminate, in case of dynamic2 only 0.66% of the
grammar did not terminate. My grammar corpus for the small experiment contained 3300
Boltzmann (see Section 4.1) and 2303 mutated grammars (see Section 4.2). dynamic2 was
run with D=9 for the Boltzmann grammars and D=16 for the mutated grammars. The
value ofD for each grammar set were the best performing values for the dynamic2 backend
from the fine dimensioning experiment (see Section 5.11). dynamic2 failed to terminate

7Results can be downloaded from: https://figshare.com/s/c90b637ed9e8c818bfcc.

https://figshare.com/s/c90b637ed9e8c818bfcc

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 59

on 4 Boltzmann and 33 mutated grammars. dynamic2 runs into non-termination, as part
of the heuristic that favours alternatives, is still, in a small way, deterministic.

The cause of non-termination in dynamic2 is as follows. When favouring of alternatives
is triggered and alternatives are scored, those with low scores are selected and then one of
them is non-deterministically picked. For a given rule, if the low scoring alternative also
happens to be recursive (direct or indirect), then the part of the heuristic that favours
alternatives ends up always picking the recursive alternative. I now explain how dynamic2
runs into the non-termination on a trivial example grammar.

3.7.2.1 Non-termination in dynamic2 – an Example

Consider the trivial grammar with rule P: ’p’ P | Q, where P , and Q are non-terminals
and p is a terminal. For the example sentence, the recursion limit of the underlying Python
stack is set to 1000. For the rest of this thesis, unless otherwise stated, the recursion limit
of the underlying Python stack is 1000.

For the example grammar, assume that the sentence generation is in progress, and at a
given point of time when d > D, P has a score of 0 (5 of its 5 derivations complete)
and Q has a score of 0.8 (1 of 5 derivations complete). Now, if rule P is entered, the
favouring of alternatives will always pick the low scoring (recursive) alternative ‘’p’ P’.
The sentence generator continues to pick the recursive alternative until P ’s score ≥ Q’s
score. This happens after 20 recursive calls to P , when its score becomes 0.8 (5 of its 25
derivations complete). When P is subsequently entered, P ’s score becomes 0.807 (5 of its
26 derivation complete), and on this occasion, the second alternative ‘Q’ with a lower score
(0.8) is picked. Subsequently, all the P ’s recursive calls unwind and now P ’s score is 0 (26
of its 26 derivations complete), and Q’s score is 0.666 (2 of its 6 derivations complete).

As the sentence generation progresses, if d > D and if P is entered, then favouritism
will always pick the low scoring (recursive) alternative ‘’p’ P’. The sentence generation
continues to pick the recursive alternative until P ’s score ≥ Q’s score. This happens
after 52 recursive calls to P , when P ’s score becomes 0.666 (26 of its 78 derivations com-
plete). When P is subsequently entered, P ’s score becomes 0.67 (26 of its 79 derivations
complete), and on this occasion, the second alternative ‘Q’ with a lower score (0.666) is
picked. Subsequently, all of P ’s recursive calls unwind and now P ’s score is 0 (79 of its 79
derivations complete) and Q’s score is 0.571 (3 of its 7 derivations complete). Whilst in
the former case, only 20 recursive calls were needed for P ’s and Q’s score to reach parity,
in the latter case, 52 calls were needed.

As the sentence generation progresses and d>D, each time Q is picked and the sentence
generation unwinds, the number of recursive calls to P that is needed for its score to
reach parity with the Q’s score, also increases. The number of recursive invocations to
P until its score reaches parity with the Q’s score at various points during the sentence

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 60

generation run are 106, 299, 448, 641, 881 and 1175. In the final case, the number
of recursive invocations (1175) needed exceeds the recursion limit (1000) of the Python
stack. The non-termination issue with dynamic2 is described for an Boltzmann grammar
in Appendix A.

3.7.2.2 Summary

dynamic2 ’s scoring mechanism significantly mitigates the issue that dynamic1 had, namely
the bias towards picking alternatives with fewer non-terminals. However, dynamic2 ’s
favouring of low scoring alternatives is, still in a small way, deterministic. Given a rule,
if an alternative contains a symbol that references back to itself, has a lower score, then
it will get picked every time. If the recursive alternative happens to have an extremely
low score, then this will lead to deep recursion and eventually the sentence generator will
run out of stack space. One possible idea to mitigate non-termination even further, is
to occasionally pick an alternative other than the lowest scoring alternative whilst still
preserving the general approach of dynamic2 . I now explore this idea in the next section.

3.7.3 The dynamic2 rws Backend

Whilst the dynamic2 ’s scoring mechanism gets fairly close to mitigating non-termination,
there are still cases where the sentence generation struggles to unwind from deep recur-
sion. A case in point is when low scoring alternatives that are recursive are picked every
time when applying favouritism. My approach to mitigate non-termination involves a
probabilistic selection of low scoring alternatives.

My probabilistic selection involves occasionally picking an alternative other than the one
with the lowest score when applying favouritism. During sentence generation, when the
heuristic has recursed beyond the threshold depth D, I continue to pick low scoring
alternatives. Since picking the low scoring alternatives always leads to non-termination in
case of recursive alternatives, I apply a probabilistic weightW to pick an alternative other
than the low scoring alternatives. To do so, I source alternatives based on a proportionate
selection.

To pick alternatives based on proportionate selection, I use the roulette wheel method. In
a roulette wheel selection, alternatives are picked in proportion to their scores. Imagine
a roulette wheel with sectors of size proportional to the alternatives’ scores. Selecting an
alternative is then equivalent to choosing randomly a point on the wheel, and locating
the corresponding sector. Since, in my case, I want to favour low scoring alternatives, I
convert this minimisation problem to a maximisation one by subtracting each alternatives’
score from 1. To the resultant scores, a roulette wheel is applied to pick an alternative.
If all of the alternatives of a rule have a resultant score of 0 (i.e. there is at least one

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 61

symbol in an alternative for which all of its derivations are incomplete), then a roulette
wheel can’t be applied. In such cases, an alternative is picked randomly. In summary, by
simply not picking the low scoring alternatives occasionally, I mitigate non-termination.

Algorithm 6 describes the dynamic2 rws backend. The function START is initialised in a
similar way to the dynamic1 backend but with one exception: the function START ac-
cepts an additional parameter, a probabilistic weight W on when to trigger proportionate
selection.

Given a rule rule, the function GENERATE continues to pick alternatives randomly (line
24). When the heuristic has recursed beyond the threshold depth D, alternatives are
favoured. For each alternative alt of the rule rule, the function CALC-ALT-SCORE is
invoked to calculate its score (line 15). The scores of the alternatives are then fed to the
function FAVOUR-ALTERNATIVE to favour a low scoring alternative (line 21). Picking
a low scoring alternative that is also recursive every time leads to non-termination. To
mitigate non-termination, low scoring alternatives are probabilistically selected. A prob-
abilistic weight W is applied to pick low scoring alternatives, and instead alternatives are
picked in proportion to their scores by invoking the function WEIGHTED-SELECTION
(line 19).

Algorithm 7 describes how an alternative is chosen based on proportionate selection for
a given rule. The function WEIGHTED-SELECTION is initialised with rule rule and
scores, containing the scores of the alternatives of rule rule. The heuristic to pick an
alternative based on proportionate selection is as follows. The scores are first converted
by calculating the ‘complement of 1’ for each score. To the resultant scores, the function
ROULETTE-WHEEL is applied to select an alternative (line 7). In cases, where all of
the alternatives of rule rule has a resultant score of 0, an alternative is picked randomly
(line 10).

My implementation of the roulette wheel is based on the article [9]. Algorithm 8 describes
the heuristic for selecting an alternative based on a roulette wheel for a given rule. The
function ROULETTE-WHEEL is initialised with scores, containing the scores of the
alternatives for a rule. The heuristic for a roulette wheel selection is as follows. A
random value scorernd is picked between 0 and sum(scores) (line 2). Each score s from
scores is subtracted from scorernd . The item corresponding to the score when scorernd <
0 is chosen.

dynamic2 rws ’s weighted approach to favour low scoring alternatives significantly mitigates
the non-termination problem. In a small experiment8 performed, where 5603 grammars
were evaluated, whereas in the case of dynamic2 0.66% of the grammars did not terminate,
in case of dynamic2 rws , only 0.5% of the grammar did not terminate. My grammar corpus
for the small experiment contained 3300 Boltzmann (see Section 4.1) and 2303 mutated
grammars (see Section 4.2). dynamic2 rws was run with D=11 and W=0.1334025 for the

8Results can be downloaded from: https://figshare.com/s/8a0bc6afb37b7b74db39.

https://figshare.com/s/8a0bc6afb37b7b74db39

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 62

Algorithm 6 Algorithm for the dynamic2 rws backend
1: function start(G, D, W)
2: for A in N do
3: R(A).entered = R(A).exited = 0

4: end for
5: sen← []
6: generate(G, R(S), sen, d=0, D, W)
7: return join(sen)

8: end function

9: function generate(G, rule, sen, d, D, W)
10: d← d+ 1

11: rule.entered ← rule.entered + 1
12: if d > D then
13: scores← []
14: for alt in rule.alts do
15: scorealt ← calc-alt-score(G, alt)
16: append(scores, scorealt)
17: end for
18: if rand(0, 1) < W then
19: alt← weighted-selection(rule, scores)
20: else
21: alt← favour-alternative(G, rule, scores)
22: end if
23: else
24: alt← rand(rule.alts)

25: end if
26: for sym in alt do
27: if sym ∈ N then . If sym is a non-terminal
28: generate(G, R(sym), sen, d+1, D, W)
29: else
30: append(sen, sym)
31: end if
32: end for
33: rule.exited ← rule.exited + 1
34: d← d− 1

35: end function

Boltzmann grammars andD=20 andW=0.0363825 for the mutated grammars. The value
of D for each grammar set were the best performing values for the dynamic2 rws backend

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 63

Algorithm 7 Algorithm to select an alternative based on proportionate selection
1: function weighted-selection(rule, scores)
2: scoreswgt ← []
3: for s in scores do
4: append(scoreswgt , (1 - s))
5: end for
6: if sum(scoreswgt) > 0 then
7: i← roulette-wheel(scoreswgt)
8: return rule.alts [i]
9: end if
10: return rand(rule.alts)
11: end function

Algorithm 8 Algorithm for a roulette wheel selection
1: function roulette-wheel(scores)
2: scorernd ← rand(0,1) ∗ sum(scores)
3: for i, s in enum(scores) do
4: scorernd ← scorernd - s
5: if score < 0 then
6: return i

7: end if
8: end for
9: end function

from the fine dimensioning experiment (see Section 5.11). dynamic2 rws failed to terminate
on 1 Boltzmann and 23 mutated grammars. I now explain how dynamic2 rws runs into
non-termination for an example Boltzmann grammar from my experimental corpus.

3.7.3.1 Non-termination in dynamic2 rws– an Example

The relevant subset of the Boltzmann grammar9 from my experimental corpus that runs
into non-termination is shown below. Some of the alternatives in my example grammar
are long, and so for convenience, I only show the relevant non-terminals that contribute
to non-termination. Non-terminal PFGQ maps to a terminal and so is easily derived.

9https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/72/9.acc

https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/72/9.acc

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 64

Non-terminal GPT is derived to a sequence of terminals in under 10 steps.

DXQML : DXQML | K
K : EZ

EZ : PFDMK

PFDMK : K | JVL
JVL : X

X : DXQML | JVL | CPM
CPM : CPM | GPT PFGQ;

It is not hard to see that various subsets of the above grammar form a recursive cycle.
DXQML’s first alternative is recursive. Deriving DXQML with its second alternative K, we
have two possibilities:

DXQML⇒ K⇒ EZ⇒ PFDMK⇒ K

DXQML⇒ K⇒ EZ⇒ PFDMK⇒ JVL⇒ X

The first possibility results in a recursive cycle. For the second possibility, on following
the derivation for X, we get further three possibilities:

DXQML⇒ K⇒ EZ⇒ PFDMK⇒ JVL⇒ X⇒ DXQML

DXQML⇒ K⇒ EZ⇒ PFDMK⇒ JVL⇒ X⇒ JVL

DXQML⇒ K⇒ EZ⇒ PFDMK⇒ JVL⇒ X⇒ CPM

The first possibility results in a recursive cycle (DXQML derives to DXQML). The second
possibility also results in a recursive cycle (JVL derives to JVL). The third possibility is
the only path that results in a successful derivation. Effectively, during sentence gen-
eration, if rule DXQML is entered, the only way to complete its derivation is through X’s
third alternative ‘CPM’. At a given point of time during sentence generation, if CPM has a
relatively higher score than that of DXQML or JVL, and if rule DXQML is entered, then the
sentence generation will run into non-termination. I now explain how dynamic2 rws runs
into non-termination for a sample run for the above example grammar.

To illustrate the non-termination problem with dynamic2 rws , I use the number of recursive
calls made to the symbols DXQML, JVL and CPM when favouring an alternative for rule X.
The symbols DXQML, JVL and CPM are the hardest to derive symbols for the first, second
and the third alternative of rule X respectively. Table 3.1 shows the scores of the symbols
DXQML, JVL and CPM at various points during sentence generation for a run that didn’t
terminate. In the table, each block of lines indicates a recursive phase. The first line
in a block marks the beginning of a recursive phase when DXQML’s and JVL’s score are
relatively lower than the CPM’s. This means, when d<D, the dynamic2 rws ’s favouritism
will continue to invoke either DXQML or JVL until their scores reach parity with CPM’s

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 65

DXQML JVL CPM
depth (d) exited/entered score exited/entered score exited/entered score

75 2/4 0.5 3/10 0.3 1/6 0.8333
116 2/12 0.8333 3/19 0.8421 1/6 0.8333

· · ·
73 10/12 0.166 13/20 0.35 2/8 0.75
229 10/41 0.7560 13/52 0.75 2/8 0.75

· · ·
354 59/109 0.4587 79/146 0.4589 5/11 0.5454
482 59/130 0.5461 79/174 0.5461 5/11 0.5454

266 94/131 0.2824 129/175 0.2628 6/12 0.5
423] 94/155 0.3935 129/213 0.3943 6/12 0.5

308 116/157 0.2611 160/215 0.2558 7/13 0.4615
651] 116/212 0.4528 160/293 0.4539 7/13 0.4615

563 131/213 0.3849 182/294 0.3809 8/14 0.4285
670 131/231 0.4329 182/319 0.4294 8/14 0.4285

279 194/233 0.1673 274/320 0.1437 9/15 0.4
862 194/324 0.4012 274/459 0.4030 9/15 0.4

457 260/325 0.1999 369/459 0.1960 10/16 0.375
978† 260/409 0.3643 369/580 0.3637 10/16 0.375

†
The recursion limit of the Python stack was reached.

]
Weighted selection was applied.

Table 3.1: Table shows the scores of the relevant symbols DXQML, JVL and CPM for the
alternatives of rule X for a sentence that didn’t terminate. For a given symbol s, it’s score
is calculated as: (1-(s.exited/s.entered)).

score. The second line in a block marks the end of a recursive phase when the scores of
the symbols – DXQML, JVL, and CPM – reach parity. For illustration purposes, I only show
a subset of the recursive phases from the sentence generation. The first recursive phase
and the last 5 recursive phases are shown in the table.

As the sentence generation progresses, the number of recursive calls needed for DXQML’s
and JVL’s score to reach parity with CPM’s score steadily increases. At the beginning of
the sentence generation, the recursive phase starts at d=73, and the scores reach parity

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 66

at d=116 after 8 and 9 recursive calls to DXQML and JVL respectively. Towards the end of
the sentence generation, for the penultimate recursive phase, the recursive phase starts at
d=279, and the scores reach parity at d=862 after 91 and 139 recursive calls to DXQML and
JVL respectively. In the final recursive phase, which starts at d=457, the scores are too
far apart, and as the sentence generation tries to get the DXQML’s and JVL’s score to reach
parity with CPM’s, it runs out of stack. Just before the recursion limit was reached, the
(number of exited over entered) for some of the other symbols that were invoked during
the sentence generation run were: 205/323 for K, 205/323 for EZ, 209/329 for PFDMK, and
370/581 for X. The output of sentence generation run is available for download from:
https://figshare.com/s/a5f2f2e247c7d1ff0ed7.

3.7.3.2 Summary

Although dynamic2 rws ’s approach of occasionally not picking the low scoring alternatives
mitigates non-termination, there are still a tiny number of cases where it doesn’t ter-
minate. Given a grammar, if there exists a subset of alternatives that is recursive, and
if the only alternative that can lead to a successful derivation has a higher score, then
the sentence generation runs into non-termination. A possible solution to reduce non-
termination is to pick alternatives that guarantee termination when applying favouritism.
I now explore this idea in the next section.

3.7.4 The dynamic3 Backend

My next approach to mitigate non-termination involves a semi-deterministic favouring of
alternatives that are more likely to terminate. Given a grammar, if a rule only contains
alternatives with non-terminals, then I have no way of statically knowing which one is
more likely to terminate. Therefore, I have had to devise an approach that allows me to
uncover alternatives with a better chance of guaranteeing termination.

My approach involves noting those alternatives that are likely to guarantee termination
during the course of the sentence generation (i.e. it is not determined statically). An
alternative is likely to guarantee termination if each of its symbols derives to a finite
depth. An alternative is of finite depth if: it contains only terminals; or it references
non-terminals that themselves are of finite depth. If a rule has one or more alternatives of
finite depth, then one of those is non-deterministically picked and recorded as the rule’s
alternative of finite length. When sentence generation recurses beyond the threshold
depth D, and favouritism applies, I pick alternatives of finite depth if one is available.
When a rule is entered, if it contains an alternative with finite depth, it is always picked.
Clearly, there will be rules for whom an alternative of finite depth hasn’t been uncovered
yet. In such cases, I wait until the sentence generator revisits the rule, in the hope that

https://figshare.com/s/a5f2f2e247c7d1ff0ed7

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 67

Algorithm 9 Algorithm for the dynamic3 backend
1: function start(G, D)
2: for A in N do
3: R(A).finite_depth = none
4: end for
5: sen← []
6: generate(G, R(S), sen, d=0, D)
7: return join(sen)

8: end function

9: function generate(G, rule, sen, d, D)
10: d← d+ 1

11: if d > D then
12: if rule.finite_depth 6= none then
13: alt← rule.finite_depth
14: else
15: altfd ←calc-alt-finite-depth(G, rule)
16: if altfd 6= none then
17: rule.finite_depth ← altfd
18: alt ← alt fd
19: else
20: alt← rand(rule.alts)

21: end if
22: end if
23: else
24: alt← rand(rule.alts)

25: end if
26: for sym in alt do
27: if sym ∈ N then . If sym is a non-terminal
28: generate(G, R(sym), sen, d+1, D)
29: else
30: append(sen, sym)
31: end if
32: end for
33: d← d− 1

34: end function

there is sufficient information to make a decision. This way I continue to find alternatives
of finite depth, and favour them as the sentence generation progresses.

Algorithm 9 describes the dynamic3 backend. The function START is initialised with

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 68

Algorithm 10 Algorithm to determine an alternative of finite depth for a rule
1: function calc-alt-finite-depth(G, rule)
2: for alt in rule.alts do
3: fd← true
4: for sym in alt do
5: if sym ∈ N then
6: if R(sym).finite_depth = none then
7: fd← false
8: break
9: end if
10: end if
11: end for
12: if fd then
13: return alt
14: end if
15: end for
16: return none
17: end function

a user-defined grammar G and the threshold depth D beyond which alternatives that
derive to a finite depth are favoured. For each rule rule, the attribute (rule.finite_depth)
records the alternative with finite depth, and is initialised to none (lines 2–4). The
function GENERATE is invoked to start sentence generation from the start rule R(S) of
the grammar (line 6). The current recursion depth d is set to 0 at the start of sentence
generation.

Given a rule rule, the function GENERATE continues to pick alternatives randomly (line
24). When d>D, favouritism applies, and alternatives with finite depth are favoured
(lines 12 and 13). If rule does not have an alternative with finite depth yet, then each
of its alternatives is examined for finite depth by invoking the function CALC-ALT-
FINITE-DEPTH (line 15). If the rule rule contains an alternative of finite depth, then
the alternative found alt fd becomes the favoured alternative for rule rule, and alt fd is
assigned to rule.finite_depth (lines 16–18). In case none of rule rule’s alternatives is of
finite depth, then one of its alternative is randomly picked (line 20).

Algorithm 10 describes the heuristic to determine if there exists an alternative with finite
depth for a given rule. The function CALC-ALT-FINITE-DEPTH is initialised with
grammar G and the rule rule that is being explored for an alternative of finite depth. For
the given rule rule, each of its alternatives is examined. fd tracks if the current alternative
is of finite depth or otherwise; fd is initialised to true. The alternative alt is considered
to be of finite depth, if each of its symbols is of finite depth (lines 4–11). If alternative
alt is of finite depth, it is returned (line 13).

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 69

dynamic3 ’s semi-deterministic approach to favour alternatives that guarantee termination
significantly reduces non-termination. In a small experiment10, where 5603 grammars were
evaluated, whereas in the case of dynamic2 rws 24 grammars did not terminate, in the case
of dynamic3 only one of the mutated grammar11 did not terminate. My grammar corpus
for the small experiment contained 3300 Boltzmann (see Section 4.1) and 2303 mutated
grammars (see Section 4.2). dynamic3 was run with D=16 for the Boltzmann grammars
and D=18 for the mutated grammars. The value of D for each grammar set were the
best performing values for the dynamic3 backend from the fine dimensioning experiment
(see Section 5.11). I now explain how dynamic3 runs into non-termination for that one
instance of the grammar.

3.7.4.1 Non-termination in dynamic3– an Example

For the mutated “Java” grammar that exhibited non-termination, of its 152 rules, dy-
namic3 uncovered alternatives of finite depth for only 8 of them for a run that didn’t ter-
minate. The mutated grammar runs into non-termination as one of its core non-terminal
that is referenced at multiple places within the grammar has become much harder to
derive. The subset of the original Java grammar that is relevant to the mutation is shown
below:

name : qualified_name | simple_name
qualified_name : name DOT_TK identifier

simple_name : identifier

identifier : ID_TK

The mutated grammar was generated by mutating the only symbol in the second alter-
native of the ‘name’ rule in the above grammar. In the second alternative, the symbol
‘simple_name’ was replaced by symbol ‘if_then_else_statement’. The subset of the
mutated Java grammar showing the mutation to the second alternative of the ‘name’s rule
is as follows:

name : qualified_name | if_then_else_statement
qualified_name : name DOT_TK identifier

if_then_else_statement :

IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement

expression : assignment_expression

statement_nsi : for_statement_nsi | ... | if_then_else_statement_nsi
statement : for_statement | ... | if_then_else_statement

10Results can be downloaded from: https://figshare.com/s/885fcd7b2fcc4ad48019.
11https://github.com/nvasudevan/experiment/blob/master/grammars/mutlang/acc/mutate/Java/Java.0_96.acc

https://figshare.com/s/885fcd7b2fcc4ad48019

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 70

Whereas in the original Java grammar, the non-terminal name is derivable in three steps
(name⇒ simple_name⇒ identifier⇒ ID_TK), in the case of the mutated grammar, this
is lot harder. The second alternative now references symbol if_then_else_statement
that in turn references three other non-terminals: expression, statement_nsi and
statement. The non-terminals referenced form the core part of the subsets related to
the expressions and the statements within the grammar. These subsets are deeply nested,
and so dynamic3 struggles to uncover alternatives of finite depth for this grammar.

One possible solution to mitigate such rare cases of non-termination is to calculate al-
ternatives of finite depth prior to sentence generation and apply them when favouring
alternatives.

3.7.5 The dynamic4 Backend

My third and final approach to mitigate non-termination relies on a deterministic se-
lection of ‘finite depth’ alternatives when applying favouritism. Whereas in dynamic3
alternatives of finite depth were calculated during the course of the sentence generation,
in dynamic4 , the alternatives of finite depth are statically calculated prior to sentence
generation. Stated differently, dynamic4 ’s heuristic to calculate alternative of finite depth
is essentially equivalent to dynamic3 , when run for long enough.

A fixed-point heuristic is used to calculate the sequence of alternatives that collectively
derive to a finite depth for a given grammar. Given a grammar, I iterate over its rules, and
for each rule, I check if any of its alternatives derive to a finite depth. If a rule contains
such an alternative, then that becomes the favoured alternative for that rule. Every time
an alternative of finite depth is found, then that aids in uncovering even more alternatives
of finite depth. This process continues until the sequence of alternative of finite depth has
been uncovered for all of the rules in the grammar.

Algorithm 11 describes the dynamic4 backend. The function START is initialised in
a similar way to the dynamic3 backend but with one exception: the function CALC-
FINITE-DEPTH is invoked to calculate the alternative with finite depth for each rule
(line 5).

Given a rule rule, the function GENERATE continues to pick alternatives randomly (line
15). When the heuristic has recursed beyond the threshold depth D, predetermined
alternatives that guarantee termination are picked (line 13).

Algorithm 12 describes the heuristic to calculate the alternative of finite depth for each
rule for a given grammar. The function CALC-FINITE-DEPTH is initialised with the
user defined grammar G. A copy of the grammar G’s non-terminals whose rules are to
be explored for finite depth is noted in Nc (line 2).

For a given grammar G, alternatives of finite depth are uncovered iteratively. In each
iteration, for each grammar rule rule, function CALC-ALT-FINITE-DEPTH (see Algo-

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 71

Algorithm 11 Algorithm for the dynamic4 backend
1: function start(G, D)
2: for A in N do
3: R(A).finite_depth = none
4: end for
5: calc-finite-depth(G)
6: sen← []
7: generate(G, R(S), sen, d=0, D)
8: return join(sen)

9: end function

10: function generate(G, rule, sen, d, D)
11: d← d+ 1

12: if d > D then
13: alt← rule.finite_depth
14: else
15: alt← rand(rule.alts)
16: end if
17: for sym in alt do
18: if sym ∈ N then
19: generate(G, R(sym), sen, d+ 1, D)
20: else
21: append(sen, sym)

22: end if
23: end for
24: d← d− 1

25: end function

rithm 10) is invoked to determine if there exists an alternative with finite depth. On
finding an alternative alt with finite depth, it is assigned to rule.finite_depth (line 9).
The non-terminal associated with the rule rule is removed from Nc, and the rule rule is
explored no further (lines 10 and 11). The iterative search continues until an alternative
with finite depth has been found for every rule (i. e. a path has been found from a given
alternative that collectively are of finite depth).

In a small experiment12 performed, where 5603 grammars were evaluated, none of the
grammars ran into the non-termination problem. My grammar corpus for the small
experiment contained 3300 Boltzmann (see Section 4.1) and 2303 mutated grammars (see
Section 4.2). dynamic4 was run with D=14 for the Boltzmann grammars and D=26 for
the mutated grammars. The value of D for each grammar set were the best performing

12Results can be downloaded from: https://figshare.com/s/8a33288ec46cede9d729.

https://figshare.com/s/8a33288ec46cede9d729

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 72

Algorithm 12 Algorithm to calculate alternatives with finite depth
1: function calc-finite-depth(G)
2: Nc ← copy(N)

3: while len(Nc) > 0 do
4: for A in N do
5: rule← R(A)

6: if rule.finite_depth == none then
7: alt ← calc-alt-finite-depth(G, rule)
8: if alt 6= none then
9: rule.finite_depth ← alt
10: remove(Nc, A)

11: break
12: end if
13: end if
14: end for
15: end while
16: end function

values for the dynamic4 backend from the fine dimensioning experiment (see Section 5.11).

3.8 Summary

In this chapter, I presented my ambiguity detection tool, SinBAD . SinBAD houses sev-
eral different backends, ranging from pure random to heuristic driven, that each uses a
non-deterministic approach to detect ambiguities in grammars. I started with a simple
backend, purerandom. Although purerandom uncovers close to half the number of ambi-
guities on my grammar corpus, it runs into non-termination on 87% of the grammars. To
tackle non-termination, I created various heuristic driven backends. Each of my heuristic
driven backends uses a specific approach to tackle non-termination whilst still continuing
to perform well in uncovering ambiguities.

In dynamic1 and dynamic2 , I showed how using a simple scoring mechanism to favour
alternatives that encourage termination significantly mitigates non-termination. How-
ever, the deterministic scoring mechanism occasionally leads to recursive cycles. In dy-
namic2 rws , I applied a roulette wheel selection of scores. The weighted application of
scores mitigated non-termination even further although not fully. In dynamic3 , I explored
a semi-deterministic selection of alternatives that guarantee termination, which failed to
terminate in just one case. Finally, in dynamic4 , I showed that by using predetermined
alternatives that guarantee termination, there were no cases of non-termination.

To evaluate my backends properly, I need a larger grammar corpus. Since generating such

CHAPTER 3. SEARCH-BASED AMBIGUITY DETECTION 73

a corpus by hand is not feasible, I devised two novel ways of generating grammars. In the
following chapter, I present my grammar generation approaches.

Chapter 4

Grammar Generation

In this chapter I introduce new techniques for evaluating the effectiveness of ambiguity
detection tools. I believe that evaluating such tools requires much larger input corpuses
than previously used: mine contains over 20,000 grammars of various types. In order
to generate such a large corpus, one cannot rely on hand-written grammars. I therefore
created two large corpuses of random grammars: Boltzmann sampled and mutated PL
grammars. The first class of random grammars is generated using Boltzmann sampling,
an approach which provides some statistical guarantees about the randomness of the
resulting generators. The second class of random grammars is generated through mutation
of existing grammars.

This chapter comes in two parts. The first part introduces Boltzmann sampling and
then presents the first Boltzmann sampler for CFGs. The second part covers the gram-
mar mutation technique, wherein I present five different types of mutation operators for
generating random PL grammars.

4.1 Boltzmann Sampled Grammars

Boltzmann sampling is a framework for random generation of combinatorial structures
(see [11] for further details). The basic idea is to give the sampler a class specification of a
combinatorial structure and a value to control the size of the generated objects. For a given
class C, and size n, the sampler provides approximate-size uniform random generation—
objects are generated with approximate size n±ε, where ε is a fixed tolerance, but objects
of the same size occur with equal probability. This allows the sampler to generate large
objects in linear time. In this section I provide the first Boltzmann sampler for grammars.

Figure 4.1 describes my framework for generating Boltzmann sampled grammars. For a
given grammar size (where |G| = number of rules), the specification generator generates a
Boltzmann class specification. A class specification is a set of definitions that essentially
represents the ‘style of grammars’ that one wishes to generate. For the purposes of my

74

CHAPTER 4. GRAMMAR GENERATION 75

Boltzmann

sampler
Valid

grammar

Specification

generator

Grammar

size

class

specification grammar

Apply

filters.

Grammar

valid?

yes

no

Figure 4.1: Framework for generating Boltzmann grammars.

experiment, I am mostly interested in PL-like grammars, and so by style of grammars, I
simply mean ‘measurable’ aspects of grammars, such as the number of rules a grammar
contains, the percentage of empty alternatives and so on. The generated specification
is then fed to the Boltzmann sampler to generate a grammar. Although Boltzmann
samplers are quite efficient at generating randomised tree structures, they are unaware
of the semantics of the objects that they generate. Inevitably, my Boltzmann sampler
generates PL grammars that are semantically non-sensical. For instance, the generated
grammars may contain empty rules or may contain rules with far too many alternatives
than one might typically expect in PL grammars. I am therefore, forced to apply post-
filters to restrict the grammars generated to those that resemble PL grammars. Such
filters are needed if one wishes to generate PL-like grammars. The various parts of my
Boltzmann framework are described in the subsequent subsections.

4.1.1 Specification Generator

The primary input to the specification generator is the grammar size. PL grammars come
in varying sizes: from JSON (with 6 rules) to Java (with over 200 rules). Although my
Boltzmann sampler is quick to generate grammars of various sizes, generating a valid
grammar is (roughly) proportional to its size. Whereas generating a valid grammar for
lower sizes (|G| < 10) took a minute or so, generating a valid grammar for higher sizes
(|G| > 50) took easily up to an hour. Therefore, for my experiment, I restricted grammar
generation to sizes ranging from 10 to 75 inclusive.

4.1.2 Class Specification

A Boltzmann sampler class specification is a grammar containing a set of productions. A
production is of the form: A: 〈rhs〉, where A is the name of the class being defined and
〈rhs〉 is a set of definitions. A definition is of the form DefX Y, where DefX denotes a
constructor and Y is either: a reference to a definition (if a definition Y exists) or a literal
otherwise.

Since, as far as I am aware, this is the first time that Boltzmann sampling has been used to
generate grammars, I am forced to create a class specification myself. Determining a good

CHAPTER 4. GRAMMAR GENERATION 76

Cfg = Cfg Rule ... Rule
Rule = SingleAlt Alt | RuleAlts1 Rule Alt
Alt = EmptyAltSyms | SingleAltSyms1 Symbol | AltSyms1 Alt Symbol
Symbol = NonTerm NonTerm | Term Term
NonTerm = NonTerm1 | NonTerm2 | ... | NonTermN
Term = Term1 | Term2 | ... | TermN

Figure 4.2: Tree specification for generating grammars.

class specification is arguably the hardest part of Boltzmann sampling, and is complicated
by the fact that grammars do not have a single, obvious specification. Furthermore, since
grammars are unbounded in size, I necessarily have to restrict the size of those generated
to make using them practical. This immediately led me to a difficult question: what style
of grammars do I want? In reality, I am most interested in grammars which somewhat
resemble PL grammars. I have therefore crafted my use of Boltzmann sampling to lead
to grammars which roughly resemble real PLs. The resulting grammars are close to
those that one might reasonably expect to see for PLs. While I do not claim that my
specification is perfect, it is the result of careful, and considerable, experimentation.

My class specification is shown in Figure 4.2. Using [31] as a guiding principle, my specifi-
cation is designed to give me control over three things: the number of empty alternatives,
the number of alternatives per rule, and the number of symbols per alternative. Cfg de-
notes a context-free grammar, Rule a production rule, Alt a production alternative, and
Symbol denotes either a non-terminal (a NonTerm) or a terminal (a Term) symbol. A CFG
consists of 1 or more production rules (hence the references to multiple Rule definitions).
Rule has two outcomes: it can either be called recursively to build a list of alternatives;
or just build a list with single alternative. Alt has three choices: it can either be called
recursively to build a sequence of symbols; or just build a sequence with one symbol
(middle choice); or an empty string (EmptyAltSyms). The specification enforces equal
numbers of NonTerms and Terms in a grammar, the 1:1 ratio seeming to be a reasonable
heuristic based on my observations of real grammars.

It is worth noting that even minor variations to the specification can lead to significantly
differing “styles” of grammars being generated. For instance: replacing SingleAlt Alt by
EmptyAlt would cause a much higher percentage of empty alternatives to be generated;
or adding a choice SingleAltSyms2 Symbol to the Alt production would result in higher
percentage of single symbol alternatives. Therefore, the design of the specification with
its set of choices for each production is important in controlling the style of grammar that
gets generated.

CHAPTER 4. GRAMMAR GENERATION 77

4.1.3 Boltzmann Sampler

Given a class specification, the Boltzmann sampler generates random grammars. A Boltz-
mann sampler is parameterised by two values that control the size of the generated objects:
singular precision and value precision. To get an efficient sampler, these two values need
to be set as low as possible [11]. However, the lower these values are, the greater the like-
lihood of large objects being generated. This is a problem, as “large” means rules would
have more alternatives and symbols per alternative than one desires. The challenge, then,
is to find values that generate large numbers of relevant grammars in reasonable time.
After considerable experimentation, I settled on values of 1.0e-7 and 1.0-e-4 for the singular
and value precisions respectively.

4.1.4 Filtering

My Boltzmann class specification gets me in the rough neighbourhood of PL grammars,
but some obvious differences remain. Alternatives in PL grammars are typically short
(number of symbols per alternative roughly varies between 0 and 5). The sampler strug-
gled to generate grammars when I restricted the number of symbols per alternative to
5, so I relaxed this criterion. Approximately 15–20% of alternatives from each grammar
generated by the sampler therefore have more than 5 symbols per alternative.

Similarly, the sampler tends to generate a much larger number of empty alternatives than
are typical of PL grammars. Using Basten’s PL grammar corpus as an example, the
proportion of empty alternatives varied between 4% for Java to 19% (CSS). I therefore
wrote a filter to remove all grammars that had a proportion of empty alternatives above
5%. Such filters are needed if one wishes to generate PL-like grammars.

In some cases, my sampler generated too many alternatives for a rule. PL grammars
usually contain 3–5 alternatives per rule. I therefore wrote a filter which restricts the
number of alternatives per rule to 5.

Because the sampler is unaware of the precise semantics of grammars, it can and does
produce grammars which are nonsensical or trivially ambiguous. I apply additional filters.
Grammars which contain unreachable symbols (i.e. symbols that can’t be reached from
the start rule) are excluded. Grammars containing non-terminating cycles of the form
A: B and B: A are excluded as they consume no input and generate the empty language.
Finally, grammars which contain alternatives with the same sequence of symbols (e.g. A:
X | X | ...) are excluded as such grammars are trivially ambiguous.

CHAPTER 4. GRAMMAR GENERATION 78

4.2 Mutated Grammars

The second class of random grammars is generated by mutating existing PL grammars.
The class of PL grammars is particularly interesting as I, like most others working in
this field, am particularly interested in the ambiguity of PL-like grammars. There is an
inevitable problem with generating PL-like grammars. There are only a handful of PL
grammars and most PLs are written for approaches such as LR parsing that accept only
unambiguous grammars. Basten hand-modified 20 PL grammars to be ambiguous [4]
which I reuse in my suite for comparison purposes. However, one can easily, and inad-
vertently, create a solution which works well for such a small corpus but little beyond it.
Thus, by generating a huge number of possibly ambiguous PL-like grammars, I hope to
explore a much wider set of possibilities than is practical by hand.

Random grammar generators have one major problem from my perspective: even if they
produce grammars in the general style of those used by PLs, it can be reasonably argued
that they are never close enough. Of course, exactly what is close enough is impossible
to pinpoint: it seems unlikely that any metric, or set of metrics, can reliably classify
PL vs. non-PL grammars. Instead, I have little choice but to fall back on the intuitive
notion that “I know one when I see one”. This means that past work has struggled to
understand how ambiguity affects PL-like grammars: one simply can’t get hold of enough
of them to perform adequate studies. The best attempt of which I am aware is the work of
Basten, who took 4 unambiguous PL grammars and manually altered them to introduce
ambiguity [6]. Manually altering grammars is tedious, hard to scale, and always open to
the possibilities of unintentional human bias.

I have therefore devised a simple way of generating arbitrary numbers of ‘PL-like’ gram-
mars with possible ambiguity. My approach to grammar mutation bears no relation to
grammar evolution or grammar recovery. Instead, my basic tactic is inspired by Basten’s
manual modifications: I take a real (unambiguous) grammar for a PL and perform a single
random alteration to a single rule. Although there are numerous possible mutations, I
restrict myself to the following five, each of which is applied to a single rule:

Add empty alternative This is only possible if a rule does not already have an empty
alternative.

Mutate symbol Randomly select a symbol from an alternative and change it. A non-
terminal can be replaced by a terminal and vice versa.

Add symbol Randomly pick an alternative and add a symbol at a random place within
it.

Delete symbol Randomly delete a symbol from an alternative. Only non-empty alter-
natives are considered.

CHAPTER 4. GRAMMAR GENERATION 79

Switch symbols Randomly pick an alternative and switch any two symbols. This is
possible only with alternatives with two symbols or more.

My mutated grammars are therefore identical to a real PL grammar, with only a single
change. This is the best way that I can imagine of solving the “I know it when I see it”
problem. As we will see later, these simple mutations introduce a surprising number of
ambiguities.

Algorithm 13 describes each of my mutation operator function. The definitions from
Section 3.4 are re-used and some additional notations are defined. For a grammar G,
Grules refers to its rules. For n<N , the function randinds(0, N, n) returns a list of n
distinct values picked randomly between 0 (including) and N (excluding). For a list l,
index i, and value v, the function insert(l, i, v) inserts value v in l at index i. For a list l,
the function delete(l, i) deletes the element at index i in l. Given a grammar, my mutation
operators work on a copy of the grammar. For the purposes of this section, I denote G
as the working copy of the grammar.

For the ‘add empty alternative’ mutation, for a given grammar, rules that do not have
empty alternatives are first identified. From these rules, a rule is randomly selected, and
an empty alternative is added.

For mutation of type ‘add symbol’, for a given grammar, a rule is randomly selected.
From the selected rule, an alternative is randomly picked. From the selected alternative,
a position is randomly picked and a randomly selected symbol from N ∪ T is inserted.

For mutation of type ‘mutate symbol’ and ‘delete symbol’, for a given grammar, a rule is
randomly selected. From the selected rule, one of its non empty alternatives is randomly
picked. For ‘mutate symbol’ mutation, a symbol is randomly picked from the selected
alternative, and is replaced with a randomly selected symbol from N ∪ T . For ‘delete
symbol’ mutation, from the selected alternative, a symbol is randomly picked and deleted.

For mutation of type ‘switch symbol’, for a given grammar, rules containing alternatives
with two or more symbols, are identified. From the identified rules, a rule is randomly
picked, and one of its alternatives containing two or more symbols is randomly picked.
From the identified alternative, pick two positions randomly and switch the symbols.

4.3 Summary

In this chapter, I presented two novel grammar generating techniques. I implemented the
first Boltzmann sampler for CFGs. Using my Boltzmann sampler I then showed how a
large corpus of random grammars of various sizes can be generated. I then presented my
grammar mutation technique, wherein using five different types of mutation operators, a
large corpus of PL grammars can be generated.

CHAPTER 4. GRAMMAR GENERATION 80

Algorithm 13 Algorithm describing the various mutation operators for PL grammars

1: function add-empty-alt(G)
2: rules← []

3: for rule ∈ Grules do
4: for alt ∈ rule.alts do
5: if |alt| = 0 then
6: append(rules, rule)

7: break
8: end if
9: end for
10: end for
11: r ← rand(Grules − rules)
12: append(r.alts, [])

13: end function

1: function add-symbol(G)
2: rule← rand(Grules)

3: alt← rand(rule.alts)

4: i← randinds(0, |alt|, 1)

5: tok ← rand(N ∪ T)

6: insert(alt, i, tok)

7: end function

1: function mutate-symbol(G)
2: rule← rand(Grules)

3: alts← []

4: for alt ∈ rule.alts do
5: if |alt| > 0 then
6: append(alts, alt)

7: end if
8: end for
9: alt← rand(alts)

10: i← randinds(0, |alt|, 1)

11: tok ← rand(N ∪ T)

12: alt[i] = tok

13: end function

1: function delete-symbol(G)
2: rule← rand(Grules)

3: alts← []

4: for alt ∈ rule.alts do
5: if |alt| > 0 then
6: append(alts, alt)

7: end if
8: end for
9: alt← rand(alts)

10: i← randinds(0, |alt|, 1)

11: delete(alt, i)

12: end function

1: function switch-symbols(G)
2: rules← []

3: for rule ∈ Grules do
4: for alt ∈ rule.alts do
5: if |alt| ≥ 2 then
6: append(rules, rule)

7: break
8: end if
9: end for
10: end for
11: r = rand(rules)

12: alts← []

13: for alt ∈ r.alts do
14: if |alt| ≥ 2 then
15: append(alts, alt)

16: end if
17: end for
18: alt = rand(alts)

19: i, j ← randinds(0, |alt|, 2)

20: t = alt[i]

21: alt[i] = alt[j]

22: alt[j] = t

23: end function

CHAPTER 4. GRAMMAR GENERATION 81

To understand how well my dynamic backends work in detecting ambiguities, I perform a
large-scale evaluation, comparing my backends with other extant tools. In the following
chapter, I present my experimental evaluation of ambiguity detection tools.

Chapter 5

Dimensioning Experiments

The aim of this chapter is to uncover the best performing run-time option for each tool
from my experimental suite. This chapter comes in four parts. The first part presents my
experimental suite listing the various run-time options and the range of values that each
tool supports. The details of my grammar collection used for various experiments is then
listed. The second part presents a novel search-based implementation for exploring the
solution space of a tool option. The third part covers the crude dimensioning experiment,
wherein I apply my search-based implementation to each tool option to uncover promising
regions in its solution space. The fourth part covers the fine dimensioning experiment,
wherein for each tool option, the promising regions uncovered by the crude dimensioning
experiment are exhaustively searched to uncover the best performing run-time value.

5.1 Experimental Suite

The objective of my experiments is to understand how well search-based approaches per-
form in detecting ambiguities. Since ambiguity is inherently undecidable, it is impossible
to evaluate such a tool in an absolute sense. Instead, I evaluated my tool against three
others: ACLA, AMBER, and AmbiDexter. Each tool takes a different approach: ACLA
uses an approximation technique; AMBER uses an exhaustive search; AmbiDexter uses
a hybrid approach where an approximation technique is applied to filter out unambigu-
ous grammar subsets and on the resulting grammar an exhaustive search is used; and
SinBAD ’s backends use a random search-based approach.

All the tools except ACLA have run-time options which adjust the way they operate and
thus affect which ambiguities they find. I believe the fairest comparison is between the
tools at their best, and that I need to use the “best” run-time option values possible.
However, discovering what the best options are by trying all possibilities on my full
set of grammars, is prohibitively expensive1. Instead, I first perform a “dimensioning”

1A reasonable lower bound estimate is at least 3 core months

82

CHAPTER 5. DIMENSIONING EXPERIMENTS 83

experiment on a subset of the grammars to determine good tool options.

The dimensioning experiment constitutes of two parts: crude and fine dimensioning. The
crude dimensioning run explores the search space of a tool option as much as possible to
get a rough idea of the solution landscape. This is then followed by the fine dimensioning
run, where the solution space – containing potential good solutions, uncovered by the
crude dimensioning run – is explored in finer detail. For the fine dimensioning run, the
tools are run on a bigger (approximately twice the size) collection of grammars. Further
for the dimensioning runs, the tools are run several times (approximately 30 and 15 times
for the crude and fine dimensioning respectively) in exploring the solution space for each
tool option. I do not claim that the option values discovered necessarily allow each tool
to operate at its maximum potential; rather, I believe that they allow the tool to operate
close enough to its maximum potential to make a comparison meaningful.

Using the run-time options and values determined from the fine dimensioning run, I then
run the “main” experiment on a large set of grammars (approximately 5 times bigger)
with each of the 4 tools. My main experiment explores a subset of the grammars from
my corpus. There is a small chance that in evaluating my backends, I may have been
biased in choosing my grammars for the main experiment. To check that the proportion
of grammars discovered as ambiguities scales up, I run a validation experiment using only
the best SinBAD ’s backend on a much larger set of grammars (just over twice the size
used for the main experiment). Note that for my experiments, I am not worried about the
particular ambiguous fragments identified: I care only whether a tool uncovers ambiguity
in a grammar or not.

My experimental setup is fully repeatable. The grammar generators, the grammar corpus
I used, and the results obtained can be downloaded from my experimental suite:

https://figshare.com/s/990138b4dec10691f3f0

5.2 Grammar Collection

I evaluated the various tools on three different sets of grammars: Boltzmann sampled
grammars, altered PL grammars, and mutated grammars. Boltzmann sampled grammars
were described in Section 4.1. The altered PL grammars are taken from [7], where Pascal,
SQL, Java, and C grammars were manually modified to produce 5 ambiguous variations
of each. The mutated grammars were described in Section 4.2. Table 5.1 shows the
size (number of rules) of the grammar sets used in each experiment. For the Boltzmann
sampled grammars, each size (10–75) is proportionately represented: for the dimensioning
experiment, 10 grammars of each size were used whereas for the main experiment, 50
grammars of each size are used.

https://figshare.com/s/990138b4dec10691f3f0

CHAPTER 5. DIMENSIONING EXPERIMENTS 84

Dimensioning
Crude Fine Main Validation

Boltzmann 330 660 3300 6600
Altered PL 20 20 20 -
Mutated 125 500 2303 5941

Total 475 1180 5623 12541

Table 5.1: The size of the grammar sets used for the crude and fine dimensioning, main
and validation experiments.

For the mutated grammars, each mutation category (add empty alternative, mutate sym-
bol, add symbol, delete symbol, and switch symbols) is proportionately represented for
the dimensioning experiment. I use 20 grammars from the mutation category. However,
for the main experiment, the “add empty alternative” mutation is less represented than the
others as there are only so many possible rules where one can add an empty alternative.
For instance, the SQL grammar has 29 rules with no empty alternatives, thus allowing
us to generate at most 29 possible mutations. Therefore, for the add empty alternative, I
could only generate a total of 303 mutations (Pascal: 69, SQL: 29, Java: 100, C: 64, and
CSS: 41). For the remaining mutation categories, I use 500 grammars from each category
(100 from each language).

5.3 Hardware

The crude dimensioning was performed on an i7-2600S CPU 2.80GHz machine with 4
real cores and 8GiB memory; hyperthreading was turned off. The fine dimensioning, the
main and the validation experiments were performed on an Intel i7-4790K CPU 4.0GHz
machine with 4 real cores and 24GiB memory; turbo mode hyperthreading was turned
off. For all my experiments, I used 3 cores per machine. The experiments took around
68 core-days in total, broken down into: 40 core days for the crude dimensioning run;
15 core-days for the fine dimensioning run; 10 core-days for the main experiment; and 3
core-days for the validation experiment.

5.4 Tools and Options

My tools come with options, and several of those options support a broad range of values.
Through the dimensioning experiments, I wish to uncover, for each tool, and for each

CHAPTER 5. DIMENSIONING EXPERIMENTS 85

Tool Option Values

AMBER Search by length 0 to ∞
Search by example 0 to N
Ellipsis Yes / No

AmbiDexter Length 0 to N
Incremental length 0 to ∞
Filter None, LR0, SLR1, LALR1, LR1

dynamicn Depth 0 to ∞
dynamic2 rws Depth 0 to ∞

Weight to unfavour alternatives 0 to 1

Table 5.2: Options and the range of run-time values supported by AMBER, AmbiDexter,
dynamicn and the dynamic2 rws backends.

grammar collection, the best performing option(s) and the best performing run-time value
for that option. I now describe the various options that each tool supports.

ACLA has no options, so does not need to be considered further. For the rest of the tools,
the options and the range of values that each tool supports is listed in Table 5.2.

AMBER can search in two modes: by length, where strings up to a fixed length N are
checked; or by example, where the search is limited by the number of example strings
(of unrestricted length) are checked. The ‘ellipsis’ option considers non-terminals also as
tokens during sentence generation, which increases the chances of finding long ambiguous
strings. Each of the main options can be run with ellipsis set to Yes/No.

AmbiDexter comes with two main options: ‘search by fixed length’, where strings of up
to a fixed length N are checked; or by ‘search by incremental length’, where a search is
performed iteratively starting with an initial string length, and at each iteration the string
length is incremented by 1. AmbiDexter also supports the use of “filter” that prune out
subsets of the grammar proven to be unambiguous. The filter can be applied as a sub-
option to the two main options. Generating a filtered version of a grammar is included in
the time limit.

SinBAD ’s dynamic backends are parameterised by a depth option D, a threshold depth
beyond which the heuristic starts to favour certain alternatives to terminate sentence
generation. A few of the dynamic backends accept an additional option, a probabilistic
weight W to unpick low cost alternatives whilst still favouring. My dynamic backends –
dynamic1 , dynamic2 and dynamic2 rws– in certain cases, didn’t unwind from deep recur-
sion and exited. In such cases, I re-ran my backends (in such cases, the normal time limit
still applied).

CHAPTER 5. DIMENSIONING EXPERIMENTS 86

As shown in Table 5.2, the range of values supported by several of the tool options is
broad and finding a reasonably good run-time value is tricky. In [40], I used my personal
experience of the tools in question to hand-pick a subset of values to test, using the best
for the main experiment. The drawback with such an approach is that one can easily be
biased in picking the initial set of values. Search-based [28] techniques have been proven
to be effective in finding ‘sufficiently good’ solutions for problems whose search spaces are
too large to find a perfect solution. For dimensioning, where I am interested in uncovering
a reasonably good value for a tool option for a given grammar corpus, I apply search-
based techniques to optimise each tool option. Search-based techniques were explained
in detail in Chapter 3 (Section 3.2). I now describe my search-based implementation for
uncovering a good run-time value for my tool options.

5.5 Search-based Techniques

To formulate a given problem as a search-based problem, three key ingredients need to be
defined [28]. The ingredients are: the representation of the candidate solution; the move
operator that manipulates a solution to generate a neighbour; and the fitness function to
measure the quality of a solution. I now provide an overview of each of these ingredients.

5.5.1 Choice of Representation

For a given problem, the representation of a candidate solution defines the shape of the
search space. Since each point in the search space corresponds to a feasible solution,
picking a suitable representation for a candidate solution is crucial. The most common
forms of representing a candidate solution include: numbers (natural numbers or floating
point), permutations, and binary strings. The choice of representation of a solution is
specific to the problem at hand.

5.5.2 Fitness Function

A search-based technique requires a mechanism by which the quality of the candidate
solutions can be measured. The fitness function is the characterisation of what is con-
sidered to be a good solution. A fitness function should sufficiently distinguish a good
solution from a poor one so as to help guide the search towards good quality solutions.
Fortunately, problems in engineering come with a rich set of metrics that naturally form
good candidates for fitness functions. The fitness function usually aims to maximise (or
minimise) depending on the problem at hand.

CHAPTER 5. DIMENSIONING EXPERIMENTS 87

5.5.3 Move Operator

For a search-based technique to be effective, picking a ‘good’ neighbour for a given solution
is crucial. Just what constitutes a good neighbour is specific to the problem at hand.
Typically, a neighbour is only a small step away for a given solution. To direct the search
towards good quality solutions, search-based techniques rely on a ‘move’ operator to move
the search from one solution to another. Given a solution, a move can either produce:
a ‘near neighbour’ by making the smallest possible change to the given solution, and
such a solution closely resembles the given solution; or a ‘distant neighbour’ by mutating
the given solution that may not resemble the given solution. The set of available move
operations that can be applied to a solution depends on the choice of the representation.

5.6 Formulating Tool Options as a Search Problem

For the dimensioning experiment, I wish to uncover the best performing run-time value for
each of the tool options: AMBER length and examples, AmbiDexter length, the dynamicn
backends, and the dynamic2 rws backends. Before search-based techniques can be applied
for dimensioning my tool options, the three key ingredients outlined in the Section 5.5
need to be defined.

5.6.1 Solution Representation

Since the format of the run-time value (see Table 5.2) that each tool option accepts is
different, the choice of representation depends on the tool option that is being optimised.

The tool options for AMBER is either the string length or the number of examples to be
explored. For the length option, since the values range from 0 to ∞ and each value is a
potential solution, I chose a natural number representation. Similarly for the examples
option, the values range from 0 to N with each value being a potential solution, so I choose
natural number representation for the examples option too. The sub-option ellipsis for
length or examples option is represented as a boolean value (Yes/No).

For AmbiDexter, the length option accepts an integer value between 0 and ∞. So a
natural number representation is chosen. The sub-option filter for length is represented
as a string.

For dynamicn backends, for the depth option, the values can range from 0 to ∞ and
each value is a potential solution. So depth is represented as a natural number. The
dynamic2 rws backend accepts a second option, weight W , to pick an alternative other
than the low cost alternatives. The value of weight ranges from 0 to 1, where each
floating point is a potential solution. So weight is represented as floating point number.

CHAPTER 5. DIMENSIONING EXPERIMENTS 88

Tool Option Values

AMBER Search by length 0, 10, 20, 50, 100, 500
Search by example 104, 106, 1010

Ellipsis Yes / No
AmbiDexter Length 0, 10, 20, 50, 100, 500

Incremental length 0, 10, 50, 100
Filter None, LR0, SLR1, LALR1, LR1

dynamicn Depth 0, 10, 25, 50
dynamic2 rws Depth 0, 10, 25, 50

Weight to unfavour alternatives 0.01, 0.05, 0.1

Table 5.3: Options and the set of run-time values invoked for AMBER, AmbiDexter,
dynamicn and the dynamic2 rws backends.

5.6.2 Fitness Function

For the purposes of my experiment, I am interested in maximising the number of ambi-
guities detected on a given grammar corpus. Thus the fitness function is simply defined
to be the total number of ambiguities detected for a given grammar corpus.

5.6.3 Move Operator

My grammar corpus contains grammars of various sizes and types, and whilst a run-time
value v for a tool option may be best performing for certain grammars, for others, it
might not be so. In [40], I regularly found that even a small change to the run-time
value of a tool option can cause it to find or miss ambiguities. Such subtle variations in
the run-time behaviour of a tool can cause tiny fluctuations in the fitness values for even
the tiniest of changes in the solution space. Therefore, in designing the move operator
for my tool options, I first had to understand their solution landscape for each grammar
collection. To get an idea of the solution landscape for each tool option, I performed a
small experiment. I ran the ambiguity detection tools from my experimental suite for
various points spread across the solution landscape. Table 5.3 shows for each tool option
the solutions there were invoked for.

My experiment showed that for tool options – AMBER (length and examples) with el-
lipsis set or otherwise and AmbiDexter (length and incremental length) with filter set or
otherwise – the fitness distribution was asymptotic. For dynamicn backends, the fitness
distribution resembled a bell curve, and the dynamic2 rws backend had a hill shaped dis-
tribution. Since the tool options show different fitness distributions, one has to be careful

CHAPTER 5. DIMENSIONING EXPERIMENTS 89

in choosing the size of the jump when selecting a neighbour.

My approach for picking a neighbour involves using an adaptive step function. The step
function is seeded with two built-in step sizes – small and big – and complemented by a
heuristic that acts as a control switch to pick between the two. My heuristic to pick a
step size is based on the variation in the fitness values of the last Nnei solutions. If the
variation is negligible (i.e below a certain threshold σnei), then a big step size is applied, in
the hope of exploring the search space beyond the current neighbourhood. On the other
hand, if the variation is fairly substantial (i.e. above a certain threshold), then a small
step size is applied, with the aim being to explore the current neighbourhood even further
to find a better solution.

5.6.4 Local Maximum

A search is said to have found a local maximum when changes to the current solution in
the neighbourhood of candidate solutions offers no further improvement. Since my tool
options exhibit tiny fluctuations in fitness values for adjacent points in the solution space,
to determine local maximum, I do not stop at the first dip in the fitness value but check
the last Nlmx fitness values to be reasonably sure that the fitness can’t be improved any
further.

5.7 Choosing a Search-based Technique

Since, there are a number of search-based techniques that can be applied to a given
problem, I am left with a difficult question: which technique should I use to evaluate my
tools? Furthermore, my choice of a technique is complicated by two additional factors.
First, as far as I am aware, this is the first time that search-based techniques have been
applied to evaluate ambiguity detection tools. Second, I need to evaluate not one, but
four tools, and each of those tools comes with various configurable options. To pick a
search-based technique, one needs to understand the solution landscape of the problem
domain. I therefore ran my ambiguity detection tools for various values spread across the
solution space.

Since there is no previous baseline to use as a reference, I have no choice but to opt for a
search technique that is simple to implement and one that can find a good enough solution
for the problem at hand. A simple search technique, and one that is generally considered
to be a good choice for first application to a problem domain, is hill climbing [20]. I chose
the hill climbing technique for dimensioning my tool options. I first provide an overview
of the hill climbing technique and then discuss its implementation.

CHAPTER 5. DIMENSIONING EXPERIMENTS 90

Algorithm 14 Hill climbing algorithm
1: s ← a randomly chosen initial solution from search space
2: repeat
3: s′ ← generate a neighbour from s

4: if (fitness of s′) > (fitness of s) then
5: s← s′

6: end if
7: until stopping condition is reached
8: return s

5.7.1 Hill Climbing

The simplest form of a search-based technique that utilises fitness information to guide the
search towards better solutions is hill climbing. In hill climbing, a point is selected from
the search space at random, and the search is initiated. A candidate solution that is in the
neighbourhood of the original, that is, a solution that is a small mutation away from the
original is examined. If the neighbour candidate solution has an improved fitness, then
the search moves to that new solution. The neighbourhood of the new candidate solution
is explored for a better solution, and so on, until a solution is found whose neighbourhood
does not offer any further improvement. Intuitively, a ‘hill’ has been climbed in the search
landscape close to the randomly chosen start point. Algorithm 14 shows the pseudo code
for the hill climbing technique. The hill located by the hill climbing technique may be a
local maxima, and may be far poorer than a global maxima in the search landscape.

The implementation of the hill climbing technique to optimise the run-time options for
each tool from Table 5.2 now follows.

5.8 Implementation of Hill Climbing

Several of my tools for dimensioning accept just one option. Only in the case of the
dynamic2 rws backend, does the tool accept two options depth D and weight W . I have
therefore split my hill climbing implementation into two parts: a first implementation
that optimises a single option; and a second implementation for the dynamic2 rws backend
to optimise its twin parameters D and W .

In the sections that follow, I first define some notations, and then present my hill climbing
implementation for optimising a single run-time option.

CHAPTER 5. DIMENSIONING EXPERIMENTS 91

5.8.1 Definitions

For a given list l containing integers, sdev(l) denotes the standard deviation of items from
l, and max(l) denotes the maximum value from l. For a list of items l, first(l, n) denotes
the first n items from l, and last(l, n) denotes the last n items from l. To append an item
v to a list l, append(l, v) is used.

For a given solution s, smallstep(s) and bigstep(s) denote functions that return a near
neighbour and a distant neighbour from s respectively. fitness(s) denotes the fitness
function that returns the number of ambiguities found for solution s. For a given list of
pairs p, where each pair is of the form (s, f) with s referring to a solution and f referring
to the fitness at s, getfit(p) returns the list of fitness values from p. For a given tool t
that accepts option t0, t1 and so on, notation runtool(t, (t0,v0), (t1,v1), · · ·) denotes the
invocation of tool t with its option t0 set to v0, t1 set to v1 and so on respectively.

5.8.2 Hill Climbing - Single Option

The tools that I wish to optimise for a single option are: for AMBER, the length and
the number of examples option; for AmbiDexter the length option; and for the dynamicn
backends, the depth D option. For a given tool and its option that I wish to optimise, the
hill climbing search is started from the initial solution provided. The search continues to
explore the solution space iteratively by sampling solutions in the neighbourhood until no
better solution can be found. On reaching local maxima, the search returns the solutions
with the highest fitness. In cases, where the main option also accepts a sub-option, the
hill climbing implementation accepts additional parameters for setting a secondary option
and its value. The value for the sub-option is passed as is to the tool.

Algorithm 15 shows the implementation of the hill climbing technique to optimise a single
option. The function HC-TOOL-OPTION accepts the following parameters: t is the tool
to run; topt is the run-time option to optimise for tool t with s0 as the initial solution
for topt; tmisc is the additional option that tool t accepts and is set to value v; Nnei is
a constant that refers to the number of fitness values whose standard deviation controls
neighbour selection; σnei is the threshold standard deviation constant that applies for
neighbour selection; Nlmx is the number of fitness values checked to determine if a local
maximum has been found.

For a given tool t and its option topt, the function HC-TOOL-OPTION is invoked with
the initial solution of topt set to s0. In p, I track each solution sampled along with its
fitness value as a pair. p is initialised with an empty list. The current solution is noted
in s.

A search iteration works as follows. The tool t is launched for tool option topt (with its
value set to s), along with the additional option tmisc (and its value set to v) passed (line

CHAPTER 5. DIMENSIONING EXPERIMENTS 92

Algorithm 15 The hill climbing algorithm to optimise a single option
1: function hc-tool-option(t, (topt,s0), (tmisc,v), Nnei, σnei, Nlmx)
2: p←[]
3: s← s0

4: while True do
5: runtool(t, (topt,s), (tmisc,v))
6: fits ← fitness(s)

7: ps ← (s, fits)
8: append(p, ps)

9: if localmax(p, Nlmx) then
10: return best(p)
11: end if
12: s← neighbour(s, p, Nnei, σnei)
13: end while
14: end function

5). The fitness for s is noted in fits (line 6). The solution s and its associated fitness
fits is noted in the pair ps (line 7). The pair ps is then appended to p. The function
LOCALMAX is invoked to determine if local maximum has been found (line 9). On
finding a local maximum, the search stops and the function BEST is invoked to return
a list containing the best performing solutions along with the maximum fitness (line 10).
Alternatively, the search continues to explore the neighbourhood of the current solution s
to find even better solutions. The function NEIGHBOUR is invoked to select a neighbour
solution based on the current solution s, the list of pairs p containing the solution and
their fitness values from the run so far, and the two constants Nnei and σnei (line 12). The
heuristic continues to explore the solution space until no better solution can be found.

My hill climbing implementation relies on certain core functions: the function NEIGH-
BOUR that returns a neighbour for a given solution; the function LOCALMAX that
determines if a local maximum has been found; and the function BEST that returns the
best performing solution(s) from the current run. The description of the core functions
follows.

5.8.3 Neighbour Selection

My approach for selecting a neighbour is based on the variation in the fitness values from
the last Nnei runs. If the last Nnei fitness values show a noticeable variation (i.e. above
a certain deviation), then a near neighbour is picked, otherwise a distant neighbour is
picked. If the search has not sampled enough solutions (< Nnei), then a near neighbour
is picked.

Algorithm 16 describes how a neighbour is selected for a given solution. The function

CHAPTER 5. DIMENSIONING EXPERIMENTS 93

Algorithm 16 Algorithm to select a neighbour for a given solution
1: function neighbour(s, p, Nnei, σnei)
2: if (|p| < Nnei) then
3: return smallstep(s)

4: end if
5: pN ← last(p, Nnei) . Get last Nnei pairs from p
6: fitnessN ← getfit(pN)

7: if (sdev(fitnessN) > σnei) then
8: return smallstep(s)

9: end if
10: return bigstep(s)

11: end function

NEIGHBOUR generates a neighbour based on the following parameters: the given so-
lution s; p is the list of pairs, where each pair contains the sampled solution and its
respective fitness; and Nnei denotes the number of fitness values whose standard deviation
determines whether a near or a distant neighbour is selected; and σnei is the threshold
standard deviation constant.

When the search has just started and the number of solutions sampled is less than Nnei,
a near neighbour is picked by invoking the smallstep function (lines 2–4). The last Nnei

pairs from p are obtained and noted in pN (line 5). From pN , the last Nnei fitness values
is obtained and noted in fitnessN by invoking the getfit function (lines 6). The standard
deviation function sdev is applied to fitnessN to pick a neighbour: if the values in fitnessN
have varied beyond threshold value (> σnei), then a near neighbour is picked by invoking
the smallstep function (lines 7–9); alternatively, the variation in the fitness values has been
negligible, and so a distant neighbour is picked by invoking the bigstep function (line 10).

5.8.4 Local Maxima

To determine if a local maximum has been found, my heuristic does not examine just the
fitness value of the last solution sampled but examines the fitness value of the last Nlmx

solutions to be reasonably sure that the fitness can’t be improved any further. From the
solutions sampled so far, if any of the ones sampled in the last Nlmx runs has a better
fitness than the ones that precedes the last Nlmx runs, then I predict the current run is
still climbing the hill and so I continue to explore the solution space to find even better
solutions. Alternatively, if the last Nlmx runs do not produce a better solution, then the
search is stopped and is said to have found a local maximum.

Algorithm 17 describes how the local maximum is found. The function LOCALMAX
accepts two parameters: p is the list of pairs, where each pair contains a solution that

CHAPTER 5. DIMENSIONING EXPERIMENTS 94

Algorithm 17 Algorithm to determine local maximum
1: function localmax(p, Nlmx)
2: if |p| ≤ Nlmx then
3: return False
4: end if
5: pf ← first(p, |p|−Nlmx) . Get all but last Nlmx pairs from p
6: fitnessf ← getfit(pf)

7: maxfit← max(fitnessf)

8: pn ← last(p, Nlmx) . Get last Nlmx pairs from p
9: fitnessn ← getfit(pn)

10: for fit ∈ fitnessn do
11: if fit > maxfit then
12: return False
13: end if
14: end for
15: return True
16: end function

has been sampled so far along with its respective fitness; and Nlmx denotes the number
of fitness values that is examined to determine if a local maximum has been found. To
determine local maximum, at least Nlmx solutions should have been sampled (lines 2–4).
From p, the list of all but the last Nlmx pairs is obtained and noted in pf (line 5). From
pf , the list of fitness values is obtained by invoking the getfit function, and the result
is noted in fitnessf (line 6). The maximum fitness value from fitnessf is calculated and
noted in maxfit (line 7). The last Nlmx pairs from p are obtained and noted in pn (line
8). From pn, the last Nlmx fitness values are obtained by invoking the getfit function and
the result is noted in fitnessn (line 9). The local maximum is said to have been found, if
none of the fitness values from fitnessn is > maxfit (lines 10–15).

Since the heuristic to determine the local maximum does not stop at the first dip in
the fitness value but examines Nlmx fitness values before deciding on the local maximum,
there is a possibility that the search uncovers more than one solution with the best fitness.
Consequently, the heuristic picks all the best fit solutions from the search.

Algorithm 18 describes the selection of best performing solutions from a search. The
function BEST requires an input: p, a list of pairs, where each pair contains a solution
that has been sampled so far along with its respective fitness. The maximum fitness maxfit
is calculated from p (line 3). Each solution from p whose fitness matches the maximum
fitness maxfit is noted in best (lines 5–9). The list containing the best performing solutions
(best) along with the maximum fitness is then returned.

With the hill climbing implementation that optimises a single option for a given tool now

CHAPTER 5. DIMENSIONING EXPERIMENTS 95

Algorithm 18 Algorithm to determine the best solution(s)
1: function best(p)
2: fitness← getfit(p)

3: maxfit← max(fitness)
4: bests ← []
5: for s, f ∈ p do
6: if f = maxfit then
7: append(bests, s)
8: end if
9: end for
10: return bests,maxfit
11: end function

defined, the hill climbing setup for AMBER, AmbiDexter, and the dynamicn backends
can be defined.

5.8.5 Hill Climbing – AMBER

AMBER supports ambiguity detection through search by length or by examples. Hill
climbing is applied to the AMBER tool to optimise the length or the examples option.

The function HC-TOOL-OPTION (from Algorithm 15) is invoked with tool t=amber and
tool option topt set to either ‘length’ or ‘examples’. s is the initial solution for length or
examples to start the search from. The additional tool option tmisc is set to ‘ellipsis’, and
its value v is set to Yes/No depending on whether the sub-option ellipsis is being explored
or not. Nnei, σnei, and Nlmx are hill climbing constants that are set at run-time.

5.8.6 Hill Climbing – AmbiDexter

AmbiDexter supports ambiguity detection by searching for strings of fixed length. Hill
climbing is applied to AmbiDexter to optimise the length option.

The function HC-TOOL-OPTION (from Algorithm 15) is invoked with tool t=ambidexter

and tool option topt set to ‘length’. s is the initial length to start the search from. The
additional tool option tmisc is set to ‘filter’, and its value v is set to the filter that is being
optimised (see Table 5.2 for list of filters). Nnei, σnei, and Nlmx are hill climbing constants
that are set at run-time.

CHAPTER 5. DIMENSIONING EXPERIMENTS 96

5.8.7 Hill Climbing – Dynamic Backends

SinBAD ’s dynamic backends supports ambiguity detection through sentence generation.
The sentence generation relies on threshold depth D to favour alternatives. For dynamicn
backends, the hill climbing technique is implemented to optimise depth.

The function HC-TOOL-OPTION (from Algorithm 15) is invoked with tool t=dynamicn
(see Table 5.2 for list of backends) and the tool option topt set to ‘depth’. s is the initial
depth to start the search from. dynamicn backends do not support any additional options,
so option tmisc and its value v are set to null. Nnei, σnei, andNlmx are hill climbing constants
that are set at run-time.

5.8.8 Hill Climbing – The dynamic2 rws Backend

The dynamic2 rws backend works in a similar style to the dynamic2 backend but relies
on an additional parameter W , a probabilistic weight applied to pick alternatives other
than the low cost ones to mitigate recursive cycles whilst still preserving the dynamic2 ’s
general approach. For the dynamic2 rws backend, the hill climbing technique is applied to
optimise the combination of depth D and weight W .

My approach to uncover the best performing combination of depth and weight comprises
of two routines: a main routine to optimise depth; and an auxiliary routine to find an
optimal weight for each depth. The heuristic to optimise depth works in a similar style to
the heuristic for the dynamicn backend (outlined in Algorithm 15) but with one exception:
in line 5, instead of invoking the function runtool to launch the tool for a given depth,
I invoke the weight optimising routine to uncover best performing weight(s) for that
depth. Once the value of depth is fixed, the weight optimising routine then becomes a
hill climbing heuristic (see Algorithm 15) for optimising a single option, with weight as
the main option and depth as the sub-option.

Since the solution space for weight is infinite, to have a reasonable chance of uncovering
the best performing weight for a given depth, the weight optimising routine is instantiated
at various points in the solution space. The weight with the best fitness then becomes
the best performing weight for that depth.

Algorithm 19 describes my heuristic to uncover the best combination of depth and weight
for the weighted dynamicn backends. The function HC-DYNAMIC2-RWS accepts the
following parameters: b represents the dynamic backend; d0 is the initial depth; wgts0
contains a list of initial weights to explore for each depth; Nnei is a constant that refers to
the number of fitness values whose standard deviation controls neighbour selection; σnei
is the threshold standard deviation constant that applies for neighbour selection; Nlmx is
the number of fitness values checked to determine if local maximum has been found.

CHAPTER 5. DIMENSIONING EXPERIMENTS 97

Algorithm 19 The hill climbing algorithm for the dynamic2 rws backend
1: function hc-dynamic2-rws(t, (topt,d0), (tmisc,wgts0), Nnei, σnei, Nlmx)
2: p←[]
3: d← d0

4: while True do
5: w, fit← optimise-wgt(t, (topt,d), (tmisc,wgts0), Nnei, σnei, Nlmx)
6: pd ← ((d, w), fit)
7: append(p, pd)

8: if localmax(p, Nlmx) then
9: return best(p)
10: end if
11: d← neighbour(d, p, Nnei, σnei)
12: end while
13: end function

14: function optimise-wgt(t, (topt,d), (tmisc,wgts0), Nnei, σnei, Nlmx)
15: pwgts ← []

16: for w ∈ wgts0 do
17: w, fitw ← HC-TOOL-OPTION(t, (tmisc,w), (topt,d), Nnei, σnei, Nlmx)
18: pw ← (w, fitw)

19: append(pwgts , pw)
20: end for
21: return best(pwgts)
22: end function

For a given backend b, the function HC-DYNAMIC2-RWS is invoked with initial depth
set to d0. p keeps track of the depth that has been sampled so far along with the best
performing weight for each depth and its fitness. p is initialised with an empty list (line
2). The current depth is noted in d (line 3). For a given depth d, the function OPTIMISE-
WGT explores weight at different intervals to uncover the best performing weight (line
5). The best performing weight w at depth d along with fitness is noted in pd (line 6).
The list of pairs p is updated with pd (line 7).

The function LOCALMAX is invoked to determine if local maximum has been found
(line 8). On finding a local maximum, the search is stopped and the function BEST is
invoked to return a list containing the best performing combination of depth and weight
along with the maximum fitness (line 9). Otherwise, the search continues to explore
the neighbourhood of the current solution d to find even better solutions. The function
NEIGHBOUR is invoked to select a neighbour based on the current depth d, the list of
pairs p containing the solution and their fitness values from the run so far, and the two

CHAPTER 5. DIMENSIONING EXPERIMENTS 98

constants Nnei and σnei (line 11). In this way, the heuristic continues to explore the search
space until no fitter solution can be found.

For a given backend b, depth d and a list of initial weights wgts0, the function OPTIMISE-
WGT aims to uncover the best performing weight for depth d. pwgts keeps track of the
weight that has been sampled so far along with its fitness. pw is initialised as an empty
list (line 15). For the given depth d, and for each weight from wgts0, the function HC-
TOOL-OPTION (from Algorithm 15) is invoked with t=b, topt set to weight and its value
s0 set to w, tmisc set to depth and its value v set to d along with the constants (line 17).
The best performing weight w and its respective fitness fitw is noted in pw (line 18). pwgts

is updated with pw (line 19). The best performing weight for the given depth d is then
returned by invoking the function BEST on pwgts (line 21).

For the dimensioning experiments, the hill climbing functions HC-TOOL-OPTION and
HC-DYNAMIC2-RWS are executed for the tool options shown in Table 5.2.

5.9 Crude Dimensioning

The aim of crude dimensioning is to get an overview of the fitness distribution for each
tool option and for each grammar set. As such, for each tool option, I try to explore
its solution space as much as practical over two runs. First, I use hill climbing with a
carefully chosen run-time value for each of its control parameters. Since hill climbing,
by definition, is a local optimisation technique, to get an idea of the fitness distribution
beyond the neighbourhood covered by hill climbing, I perform additional tool runs. For
each tool option, manual runs are performed to sample points at various intervals in the
solution space.

5.9.1 Grammar Corpus and Time Limit

The grammar corpus for the crude dimensioning run is show in the Table 5.1). For both
the hill climbing run and the additional tool runs, the ambiguity tools were set to run for
a time limit of 10s.

5.9.2 Hill Climbing – Run-time Values

The hill climbing run requires a run-time value to be set for each of its control parameters.
Nnei and σnei control neighbour selection. Nlmx controls the number of fitness values to
checked to determine local maximum. The step size functions smallstep(s) and bigstep(s)

that determine neighbour selection for a given solution s. The initial solution s0 for the
tool option to start the search from. For the crude dimensioning experiment, the hill

CHAPTER 5. DIMENSIONING EXPERIMENTS 99

climbing run is seeded with run-time values based on my previous experience of running
such experiments from [40].

Using my experience of the tools in question, I set Nlmx, Nnei, and σnei to be 3 for all
the tool options. With regards to the step sizes, for AMBER length, AmbiDexter length,
and the depth option for the SinBAD ’s backends, the small and big step size were set to
1 and 3 respectively. For the AMBER examples option, for a given solution s, the small
and big step size increments s by 5% and 10% respectively. For the initial solution s0,
for AMBER length (ellipsis set or otherwise), AmbiDexter length (filter set or otherwise),
and SinBAD ’s backends, I set s0 = 1.

For AMBER examples option, to get a rough idea of the number of examples that it can
check in a given time limit, I performed a tiny experiment. AMBER was launched for
‘examples’ option with N=1010 on the grammar corpus used for crude dimensioning for
a time limit t=10s. My tiny experiment revealed that the number of examples checked,
ranged from: 4K to 6.7M for the Boltzmann grammar set; 1K to 5.8M for the altered PL
grammar set; and 2K to 5.5M for the mutated grammar set. The low value in each case
corresponds to the cases when the AMBER finds ambiguity quickly and exits. For the
crude dimensioning experiment, since I wish to understand how ambiguity scales up as N
increases, for all the three grammar sets, I set s0 = 100K.

5.9.3 Invoking Hill Climbing Functions

For AMBER length, since I need to explore with ellipsis set and unset, I invoked two
instances of the function HC-TOOL-OPTION with t=amber, topt =‘length’, s=1, tmisc

=‘ellipsis’, and v set to Yes or No. Likewise, for AMBER examples, two instances of
the function HC-TOOL-OPTION were invoked with t=amber, topt =‘examples’, s=100K,
tmisc =‘ellipsis’, and v set to either Yes or No.

For AmbiDexter length, five instances of the function HC-TOOL-OPTION were invoked
with t=ambidexter, topt =‘length’, s=1, tmisc =‘filter’ and for v set to one of None, LR0,
SLR1, LALR1, or LR1.

For the dynamicn backends, four instances of the function HC-TOOL-OPTION were in-
voked for each of t=dynamic1 ,dynamic2 ,dynamic3 , and dynamic4 ; topt =‘depth’; and
s=1. The dynamic2 rws backend requires an additional parameter weight W to proba-
bilistically unpick low cost alternatives for mitigating non-termination. My careful ob-
servation of the run-time behaviour of dynamic2 rws for the Boltzmann, altered PL, and
mutated grammar sets suggests that a low weight is sufficient to significantly reduce non-
termination. I therefore used W=0.01. For the dynamic2 rws backend, the function HC-
DYNAMIC2-RWS was invoked with t=dynamic2 rws , topt =‘depth’, s=1, tmisc =‘weight’,
and v=0.01.

CHAPTER 5. DIMENSIONING EXPERIMENTS 100

5.9.4 Additional Tool Runs

Additional tool runs were performed to sample solution regions unexplored by the hill
climbing run. For both Boltzmann and mutated grammar sets, additional tool runs were
performed for the following tool options: for AMBER length (with ellipsis set or otherwise)
len=50, 75, 100, 150, 200, and 500; for AmbiDexter length (for unfiltered and for each
filter) len=50, 75, 100, 150, 200, and 500; for AMBER examples (ellipsis set or otherwise)
N=2×106, 5×106, 107, 108, 109, and 1010; and for the dynamicn depth option D=25, 50,
75, 100, 150, 200, and 500.

For the dynamic2 rws backend, additional tool runs were performed for the following com-
bination of depth D and weight W : for Boltzmann grammars, for depths D=25 and 50
and weights W=0.005, 0.05, 0.075, 0.1, and 0.2; and for mutated grammars, for depths
D=30 and 50 and weights W=0.005, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4 and 0.5.

5.9.5 Crude Dimensioning Results

I now present the results of the crude dimensioning run for each tool option for the
Boltzmann and the mutated PL grammar set. Since the altered PL grammar set is tiny,
the dimensioning results are less interesting. The results for the altered PL grammar set
are shown in Appendix B. The results of the crude dimensioning run can be downloaded
from: https://figshare.com/s/0aac8b6f2b581a4f0326.

5.9.5.1 Boltzmann Grammars

Figure 5.1 shows the results from the crude dimensioning run for AMBER length and ex-
amples options, AmbiDexter length and the SinBAD ’s backends (dynamic1 , dynamic2 ,
dynamic3 , and dynamic4) for the Boltzmann grammar set. Table 5.4 shows the results
from the crude dimensioning run for the dynamic2rws backend for the Boltzmann gram-
mar set.

From Figure 5.1, we can see that the fitness distribution for the tool options – AMBER
length (ellipsis set or otherwise), AMBER examples (ellipsis set or otherwise), AmbiDexter
length (for unfiltered and for each filter) – is asymptotic (i.e. plateauing as it converges
on a value). In case of the SinBAD ’s backends – dynamic1 , dynamic2 , dynamic3 , and
dynamic4– the fitness distribution is a bell curve. That is, as the value of the solution
increases, the fitness increases for a while and then starts to dip. For the dynamic2 rws

backend, the fitness distribution is hill shaped. That is, as the depth increases, the fitness
seems to ramp up for a while and then starts to dip. For each depth, as the value of
weight increases, the fitness seems to ramp up for a while and then starts to dip.

For each tool option, the solution space containing potential good solutions (indicated by
gray shaded region in Figure 5.1) is explored in detail in the fine dimensioning experiment.

https://figshare.com/s/0aac8b6f2b581a4f0326

CHAPTER 5. DIMENSIONING EXPERIMENTS 101

20 21 22 23 24 25 26 27 28 29

20

60

100

140

180

220

String length

A
m
bi
gu

it
ie
s
fo
un

d
AMBER Length (330 grammars)

len
len+ell

105 106 107 108 109 1010

165

190

215

240

Number of examples

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Examples (330 grammars)

N
N+ell

20 21 22 23 24 25 26 27 28 29
5

35

65

95

125

String length

A
m
bi
gu

it
ie
s
fo
un

d

AmbiDexter Length (330 grammars)

len len+LR0
len+SLR1 len+LALR1
len+LR1

20 21 22 23 24 25 26 27 28 29
10

50

90

130

170

210

250

290

Depth D

A
m
bi
gu

it
ie
s
fo
un

d
dynamicn (330 grammars)

dynamic1 dynamic2
dynamic3 dynamic4

Figure 5.1: Crude dimensioning: the number of ambiguities (out of 330 grammars) found
by tool options, AMBER and AmbiDexter length, AMBER examples, and the dynamicn
backends for Boltzmann grammars.

5.9.5.2 Mutated Grammars

Figure 5.2 shows the results from the crude dimensioning run for AMBER length and
examples options, AmbiDexter length and the SinBAD ’s backends (dynamic1 , dynamic2 ,
dynamic3 , and dynamic4) for the mutated grammars. Table 5.5 shows the results from
the crude dimensioning run for the dynamic2rws backend for the mutated grammars. In
certain cases, my hill climb run terminated early. For AMBER examples, the hill climbing
run required several restarts. In both cases, with ellipsis set or otherwise, hill climbing

CHAPTER 5. DIMENSIONING EXPERIMENTS 102

W[\D 1 2 3 6 7 8 9 10 13 25 50

0.005 236 238 241 257 258 263 263 260 250 181 59
0.01 238 239 241 255 256 261 258 259 254 178 57

0.0105 242 237 241 250 254 261 258 258 252
0.011025 234 244 239 254 249 258 256 260 248
0.011576 241
0.012127 243 239 254 255 264† 258 259 247
0.012155 241
0.012733 243
0.013340 259 261
0.014007 236
0.014674 254 256
0.015407 255
0.016141 256
0.017755 259

0.05 245 247 249 249 257 260 254 252 247 179 57
0.075 243 247 248 254 256 257 259 251 244 170 55
0.1 245 249 248 247 248 252 247 252 240 172 53
0.2 222 226 224 225 224 226 227 223 222 160 53

[Weights are approximated to the nearest hundred thousandth.
† Maximum number of ambiguities found.

Table 5.4: Crude dimensioning for dynamic2 rws backend: the number of ambiguities found
(out of 330 grammars) for various values of D and W for Boltzmann grammars.

was restarted âĽĹ 5 times.

From Figure 5.2, we can see that the fitness distribution for the tool options – AMBER
length, AmbiDexter length, and AMBER examples – is asymptotic. For the SinBAD ’s
backends, the fitness distribution is a bell curve. For all the dynamicn backends, as D
increases, the fitness drops. For the dynamic2 rws backend, the fitness distribution is a hill
shaped. That is, as the depth increases, the fitness ramps up for a while and then starts
to dip. For each depth, as the value of weight increases, the fitness ramps up for a while
and then start to dip.

For each tool option, the solution space containing potential good solutions (indicated by
gray shaded region in Figure 5.2) is explored in detail in the fine dimensioning experiment.

5.10 Crude Dimensioning – Summary

The results from the crude dimensioning experiment show that for each tool the shape of
the fitness distribution is consistent across the different grammar corpuses. This means
that we can choose a single value from the potential good regions of the solution space

CHAPTER 5. DIMENSIONING EXPERIMENTS 103

20 21 22 23 24 25 26 27 28 29

8

16

24

32

40

48

String length

A
m
bi
gu

it
ie
s
fo
un

d
AMBER Length (125 grammars)

len
len+ell

105 106 107 108 109 1010

30

33

36

39

42

45

48

Number of examples

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Examples (125 grammars)

N
N+ell

20 21 22 23 24 25 26 27 28 29

10

20

30

40

50

String length

A
m
bi
gu

it
ie
s
fo
un

d

AmbiDexter Length (125 grammars)

len len+LR0
len+SLR1 len+LALR1
len+LR1

20 21 22 23 24 25 26 27 28 29

5

15

25

35

45

55

Depth D

A
m
bi
gu

it
ie
s
fo
un

d
dynamicn (125 grammars)

dynamic1 dynamic2
dynamic3 dynamic4

Figure 5.2: Crude dimensioning: the number of ambiguities (out of 125 grammars) found
by tool options, AMBER and AmbiDexter length, AMBER examples, and the dynamicn
backends for mutated grammars.

and expect it to do fairly well across my grammar corpuses.

My choice of values for the constants (Nnei, Nlmx, and σnei), and the small and big step
sizes were good enough for most of the tool options, and I went with the same values
for the fine dimensioning run. Only in the case of AMBER examples for the altered PL
grammar set, since the hill climbing required several restarts (AMBER was restarted 10
times), I felt a small change was necessary. Since the altered PL grammar set is fairly
small, I chose to let the hill climbing run for as long as it was needed, and then terminate

CHAPTER 5. DIMENSIONING EXPERIMENTS 104

W[\D 1 2 3 6 9 12 15 18 21 30 50

0.005 43 45 48 48 51 54 56 52 53 52 27
0.01 42 49 47 52 51 53 53 55 54 54 24

0.0105 42 47 50 49 52 55 54 53 53
0.011025 44 50 49 52 54 55 55 53 54
0.012127 42 46 48 50 51 55 55 53 53
0.013340 41 48 48 50 55 55
0.014674 45 47 51 54
0.016141 46
0.017755 46
0.019531 41
0.021484 45

0.03 46 50 51 51 51 52 54 55 53 50 28
0.04 48 50 50 52 52 54 55 55 55 54 31
0.05 49 50 53 53 53 54 53 56 54 50 29
0.075 51 52 53 54 53 54 55 57† 55 54 26
0.1 51 54 54 55 53 55 56 55 56 51 27
0.2 55 55 53 55 56 54 54 54 54 46 30
0.3 54 52 52 54 53 54 54 51 49 32 24
0.4 37 40 41 37 35 37 38 34 36 32 26
0.5 36 37 37 37 34 33 31 30 30 27 25

[Weights are approximated to the nearest hundred thousandth.
† Maximum number of ambiguities found.

Table 5.5: Crude dimensioning: the number of ambiguities (out of 125 grammars) found
by dynamic2rws for various D and W for the mutated grammars.

it manually. That is, for AMBER examples option for the altered PL grammar set, lines
9–11 were skipped in function HC-TOOL-OPTION (see Algorithm 15). In the case of
AMBER examples for the mutated grammar set, which also required several hill climbing
restarts (AMBER was restarted 5 times), I felt that the increased size of the grammar
collection should help in alleviating the early termination problem.

Tables 5.6, 5.7, 5.8, 5.9, 5.10 list the initial solution used for the fine dimensioning run
for tool options AMBER length, AMBER examples, AmbiDexter length, AmbiDexter
search by incremental length, SinBAD ’s backends (dynamic1 , dynamic2 , dynamic3 , and
dynamic4), and the dynamic2 rws backend respectively.

Table 5.11 lists the step sizes (small and big) applied for each tool option for all grammar
sets.

I now perform the fine dimensioning of the tool options based on the run-time values
chosen from the crude dimensioning run.

CHAPTER 5. DIMENSIONING EXPERIMENTS 105

Initial length
Ellipsis Boltzmann Altered PL Mutated

- 9 6 6
Yes 9 6 6

Table 5.6: AMBER: initial solution for length for Boltzmann, Altered PL and Mutated
grammar sets.

Initial number of examples
Ellipsis Boltzmann Altered PL Mutated

- 2×106 1×106 6×105

Yes 2×106 3×106 2×106

Table 5.7: AMBER: initial solution for examples for Boltzmann, Altered PL and Mutated
grammar sets.

Initial length
Filter Boltzmann Altered PL Mutated

- 8 6 5
LR0 8 6 7
SLR1 8 9 8
LALR1 9 9 7
LR1 9 9 7

Table 5.8: AmbiDexter: initial solution for option length for Boltzmann, Altered PL and
Mutated grammar sets.

Initial Depth D
Backend Boltzmann Altered PL Mutated

dynamic1 5 6 7
dynamic2 3 6 7
dynamic3 7 1 6
dynamic4 7 9 8

Table 5.9: dynamicn backends: initial solution for option depth.

CHAPTER 5. DIMENSIONING EXPERIMENTS 106

Initial D and W
Boltzmann Altered PL Mutated

Backend (b) D W D W D W

dynamic2rws 6 0.01 6 0.01 9 0.03

Table 5.10: The dynamic2 rws backend: initial solution for depth D and weight W for the
Boltzmann, altered PL, and the mutated grammar sets.

Tool Option smallstep(s) bigstep(s)

AMBER Length s+ 1 s+ 3

Example s× 1.05 s× 1.1

AmbiDexter Length s+ 1 s+ 3

dynamicn Depth s+ 1 s+ 3

dynamic2 rws Depth s+ 1 s+ 3

Weight s× 1.05 s× 1.1

Table 5.11: Neighbour selection: step sizes (small and big) for tool options for all grammar
sets.

5.11 Fine Dimensioning

The aim of fine dimensioning is to find the best performing solution for each tool option
from Table 5.2. Fine dimensioning for each tool option involves two runs: a hill climbing
run is performed based on the run-time values from Section 5.10, followed by additional
hill climbs and tool runs to improve on the solution uncovered by the hill climbing run.
For AmbiDexter ‘search by incremental length’ option, since the tool already searches
incrementally from an initial length, no hill climbing was performed; instead, AmbiDexter
was invoked to search from length 0. Additionally, for this option, AmbiDexter was
invoked with each of the filter set too.

5.11.1 Grammar Corpus and Time Limit

For each tool option, the experiment is invoked for each grammar collection (see Table 5.1).
Since grammars can specify infinite languages, grammar ambiguity tools can run forever.
In [40], I observed that for a time limit of 30s, most tool options produced reasonable
quality results. Only in the case of AMBER, for the PL grammar set and the mutated PL
grammar set (add symbol and mutate symbol), was there a noticeable difference between

CHAPTER 5. DIMENSIONING EXPERIMENTS 107

30s and 60s. In all three cases, AMBER found roughly 10% more ambiguities for 60
seconds. Since choosing a 60s time limit will significantly increase the running time of the
fine dimensioning run, I settled for a time limit of 30s. I don’t believe this is an issue, as
for the main experiment the tools are evaluated for much extended time limits.

5.11.2 Results

I now present the results from the fine dimensioning run for the Boltzmann, and the
mutated grammar sets. The results of the fine dimensioning run for the altered PL
grammar set are shown in Appendix C. The results of the fine dimensioning run can be
downloaded from:https://figshare.com/s/798f37cdba7898f839da.

5.11.2.1 Boltzmann Grammars

Figure 5.3 shows the results from the fine dimensioning run for the tool options AMBER
length, AMBER examples, AmbiDexter length, and the SinBAD ’s backends – dynamic1 ,
dynamic2 , dynamic3 , and dynamic4– for the Boltzmann grammar set.

AmbiDexter ilen

- LR0 SLR1 LALR1 LR1

260 240 236 219 160

Table 5.12: Fine dimensioning for the AmbiDexter incremental length ilen option: the
number of ambiguities (out of 660 grammars) found for the unfiltered and the filtered
options for the Boltzmann grammar set.

Table 5.12 shows the results of the fine dimensioning run for the AmbiDexter search by
incremental length ilen option for the unfiltered and the filtered options for the Boltzmann
grammar set. Table 5.13 shows the results of the dynamic2 rws backend for the Boltzmann
grammar set.

Table 5.14 shows the additional tool runs for the AMBER length and the examples option
for the Boltzmann grammar set. For AMBER length (with ellipsis not set), the additional
tool runs did not uncover a better solution. For AMBER length (with ellipsis set), the
additional runs uncovered a better solution for len=24 (ambiguities found=438).

For AMBER examples, additional runs were performed on ±5% of the best solutions from
the hill climbing run. For the AMBER examples (with ellipsis set or otherwise) option,
the additional runs did not uncover a better solution.

https://figshare.com/s/798f37cdba7898f839da

CHAPTER 5. DIMENSIONING EXPERIMENTS 108

W[\D 6 7 8 9‡ 10‡ 11 12‡ 13‡ 14 15 16

0.01 539 548 541 547 547 544 540 539 542 531 524
0.0105 545 544 549 545 547 545 537 544 536 533 524

0.011025 535 541 548 545 551 549 546 540 534 527 525
0.011576 536 542 542 540
0.012127 547 548 547 543 542 531 515
0.012155 533 548 542
0.012673‡ 549
0.012733 530
0.013340 540 544 554† 537 529
0.013370 543 525
0.014007 542 546
0.014039 524
0.014674 545
0.014707 539 542
0.015443 548 522
[Weights are approximated to the nearest hundred thousandth.
†
Maximum number of ambiguities found.

‡
Additional hill climb and tool runs.

Table 5.13: Fine dimensioning for dynamic2 rws backend: the number of ambiguities (out
of 660 grammars) found for various values of D and W for Boltzmann grammars.

AMBER
len len+ell N N+ell

(36, 421) (23, 435) (28907584, 421) (75320034, 484)
(31798343, 421)

(34, 363) (21, 441) (27462204, 421) (71554032, 483)
(35, 365) (22, 434) (30308425, 420) (79086035, 481)
(37, 357) (24, 438)] (33388260, 420)
(38, 364) (25, 437)
]
Better solution found from the additional tool runs.

Table 5.14: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the AMBER length and the
examples option for the Boltzmann grammar set. Pair value (l, f) denote the length l sampled
and its fitness value. Pair value (N , f) denote the number of examples N sampled and its fitness
value.

CHAPTER 5. DIMENSIONING EXPERIMENTS 109

9 18 27 36 45

215

270

325

380

435

String length

A
m
bi
gu

it
ie
s
fo
un

d
AMBER Length (660 grammars)

len
len+ell

106.3 107 107.78 108.11

370

430

490

Number of examples

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Examples (660 grammars)

N
N+ell

8 13 18 23 28 33 38 43

115

150

185

220

255

String length

A
m
bi
gu

it
ie
s
fo
un

d

AmbiDexter Length (660 grammars)

len len+LR0
len+SLR1 len+LALR1
len+LR1

3 6 9 12 15 18 21 24
470

500

530

560

590

Depth D

A
m
bi
gu

it
ie
s
fo
un

d
dynamicn (660 grammars)

dynamic1 dynamic2
dynamic3 dynamic4

Figure 5.3: Fine dimensioning for the Boltzmann grammar set: number of ambiguities (out
of 660 grammars) found by tool options, AMBER length, AMBER examples, AmbiDexter
length and the dynamicn backends.

Table 5.15 shows the additional tool runs performed for the AmbiDexter length option for
the Boltzmann grammar set. For AmbiDexter length option for filters LR0, LALR1, and
LR1, the additional runs did not uncover a better solution. For unfiltered and for filter
SLR1, the additional runs uncovered a better solution for len=27 (ambiguities found=248)
and len=31 (ambiguities found=222) respectively.

Table 5.16 shows the additional tool runs performed for the dynamicn backends depth
option for the Boltzmann grammar set. For the dynamic1 and the dynamic2 backends,

CHAPTER 5. DIMENSIONING EXPERIMENTS 110

AmbiDexter Length
unf, LR0 SLR1 LALR1 LR1

(29, 245) (31, 226) (32, 221) (27, 204) (23, 159)

(27, 248)] (29, 222)] (30, 218) (25, 203) (21, 150)
(28, 243) (30, 221) (31, 222) (26, 199) (22, 151)
(30, 247) (32, 225) (33, 220) (28, 203)
(31, 242) (33, 223) (34, 220) (29, 203)
]
Better solution found from the additional tool runs.

,
AmbiDexter invoked with filter not set.

Table 5.15: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the AmbiDexter length option
for the Boltzmann grammar set. Pair value (l, f) denote the length l sampled and its fitness
value.

there were no potential neighbouring solutions to explore, so additional tool runs were not
performed. For the dynamic3 backend, the additional runs uncovered a better solution
for D=16 (ambiguities found=586). For the dynamic4 backend, the additional runs did
not uncover a better solution.

dynamicn Depth
dynamic1 dynamic2 dynamic3 dynamic4

(9, 557) (9, 549) (14, 584) (14, 584)

(12, 584) (12, 581)
(13, 584) (13, 582)
(15, 583) (15, 583)
(16, 586)] (16, 582)

]
Better solution found from the additional tool runs.

Table 5.16: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the dynamicn depth option for
the Boltzmann grammar set. Pair value (D, f) denote the depth D sampled and its fitness value.

For the additional runs for dynamic2 rws for the Boltzmann grammar set, see Table 5.13.
For dynamic2 rws , since I need to explore the neighbourhood of the local maximum for
both depth D and weight W , I had to perform two sets of runs: hill climb runs to explore
depth in the proximity of the best performing depth; and tool runs to explore weight in
the proximity of the best performing weight. The additional hill climb runs and the tool
runs did not uncover a better solution.

CHAPTER 5. DIMENSIONING EXPERIMENTS 111

5.11.2.2 Mutated Grammars

Figure 5.4 shows the results of the fine dimensioning run for the tool options AMBER
length, AMBER examples, AmbiDexter length, and the dynamicn backends for the mu-
tated grammar set. Table 5.17 shows the results of the fine dimensioning run for the
AmbiDexter incremental length option for the unfiltered and filtered options for the mu-
tated grammar set. Table 5.18 shows the results of the fine dimensioning run for the
dynamic2 rws backend for the mutated grammar set.

6 10 14 18 22

130

140

150

160

170

String length

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Length (500)

len
len+ell

106 107

140

145

150

155

160

Number of examples

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Examples (500)

N
N+ell

6 9 12 15 18 21 24 27

60

90

120

150

180

String length

A
m
bi
gu

it
ie
s
fo
un

d

AmbiDexter Length (500)

len len+LR0
len+SLR1 len+LALR1
len+LR1

6 10 14 18 22 26 30 34

130

140

150

160

170

180

190

200

Depth D

A
m
bi
gu

it
ie
s
fo
un

d

dynamicn (500)

dynamic1 dynamic2
dynamic3 dynamic4

Figure 5.4: Fine dimensioning for the mutated grammar set: number of ambiguities
found by tool options, AMBER length, AMBER examples, AmbiDexter length, and the
dynamicn backends.

CHAPTER 5. DIMENSIONING EXPERIMENTS 112

AmbiDexter ilen

- LR0 SLR1 LALR1 LR1

168 178 177 178 86

Table 5.17: Fine dimensioning for AmbiDexter ilen: number of ambiguities found for
unfiltered and filtered options for the mutated grammar set.

W[\D 9 10 11 12‡ 13‡ 14 15‡ 16‡ 17 18‡ 19‡ 20 21‡ 22‡ 23

0.03 193 192 197 197 196 195 197 198 196 196 196 196 195 195 195
0.0315 191 192 194 193 197 197 196 195 196 197 197 197 195 197 193

0.033075 188 192 195 195 196 196 195 198 196 197 198 195 194 195 192
0.034563 198‡

0.036382 192 194 195 196 197 197 195 196 196 197 196 198† 196 197 194
0.038019 195‡

0.038201 198‡

0.040020 192 197 198† 196 196 196 197 196 196
0.041821 197‡

0.042021 198‡

0.044022 194 198† 196 196
0.046003 196‡

0.046223 198‡

0.048425 192 198† 195
0.050604 197‡

0.050846 198‡

0.053267 198†

0.055930 197‡

[Weights are approximated to the nearest hundred thousandth.
†
Maximum number of ambiguities found.

‡
Additional hill climb and tool runs.

Table 5.18: Fine dimensioning for the dynamic2rws backend: the number of ambiguities
found for various D and W for the mutated grammar set. Several combinations of D and
W found all the ambiguities.

Table 5.19 shows the additional tool runs for the AMBER length and the AMBER ex-
amples option for the mutated grammar set. For AMBER length (with ellipsis set or
otherwise), the additional tool runs did not uncover a better solution. For AMBER ex-
amples, additional runs were performed on ±5% of the best solution from the hill climbing
run. For the AMBER examples (with ellipsis or otherwise) option, the additional runs
did not uncover a better solution.

Table 5.20 shows the additional tool runs performed for the AmbiDexter length option

CHAPTER 5. DIMENSIONING EXPERIMENTS 113

AMBER

len len+ell N N+ell

(12, 171) (9, 149) (3320353, 158) (8070853, 154)
(15, 171) (3652389, 158) (8877939, 154)
(18, 171) (4017628, 158) (9765733, 154)
(21, 171) (4419391, 158) (10742307, 154)

(13, 171) (10, 146) (3154335, 157) (7667310 , 153)
(14, 170) (11, 146) (3469769, 158) (8434042 , 154)
(15, 171) (3816746, 158) (9277446 , 154)
(16, 171) (4198421, 158) (10205191, 154)
(17, 171) (4640360, 158) (11279422, 154)
(18, 171)
(19, 171)
(20, 171)
(22, 171)

Table 5.19: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the AMBER length and the
examples option for the mutated grammar set. Pair value (l, f) denote the length l sampled and
its fitness value. Pair value (N , f) denote the number of examples N sampled and its fitness
value.

for the mutated grammar set. For AmbiDexter length (filter set or otherwise) option, the
additional runs did not uncover a better solution.

Table 5.21 shows the additional tool runs performed for the SinBAD ’s backends – dy-
namic1 , dynamic2 , dynamic3 , and dynamic4– depth option for the mutated grammar
set. For the dynamic1 and dynamic2 the additional tool runs did not uncover a better
solution. For the dynamic3 backend, the additional runs uncovered a better solution for
D=23 (ambiguities found=194). For the dynamic4 backend, the additional runs uncov-
ered a better solution for D=26 (ambiguities found=191).

For the additional run for dynamic2 rws for the mutated grammar set, see Table 5.18. The
additional hill climb and tool runs did not uncover a better solution.

For the main experiment, I pick the best performing run-time option for each tool for
each grammar set from the fine dimensioning run. The next section narrows down the
option for each tool and for each grammar set.

CHAPTER 5. DIMENSIONING EXPERIMENTS 114

AmbiDexter Length,

unf, LR0 SLR1 LALR1 LR1

(14, 162) (14, 171) (14, 172) (16, 172) (17, 82)
(17, 162) (19, 172) (20, 82)
(20, 162) (22, 172) (23, 82)
(23, 162) (25, 172) (26, 82)

(12, 158) (12, 167) (12, 168) (14, 169) (15, 79)
(13, 157) (13, 169) (13, 170) (15, 170) (16, 81)
(15, 158) (17, 172) (18, 82)
(16, 157) (18, 172) (19, 82)
(18, 158) (20, 172) (21, 82)
(19, 157) (21, 172) (22, 82)
(21, 159) (23, 172) (24, 82)
(22, 157) (24, 172) (25, 82)
(20, 162) (26, 172) (27, 82)
(24, 159)
,
AmbiDexter invoked with filter not set.

Table 5.20: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the AmbiDexter length option
for the mutated grammar set. Pair value (l, f) denote the length l sampled and its fitness value.

5.12 Best Performing Tool Options

My fine dimensioning of the tools and their options for each grammar set, in certain
cases, uncovered multiple options and values that all performed equally well. For the
main experiment, for each tool and for each grammar set, I had to pick an option and a
run-time value for it. I now discuss my choice of the tool option and its run-time value
for each tool in the following sections.

5.12.1 AMBER

For the Boltzmann grammar set, the best performing option was number of examples
with ellipsis set, for N+ell=27593602. I use this option and its value as is for the main
experiment. For the altered PL grammar set, options – length and number of examples
(with ellipsis set) – performed equally well. For length, len=11, 12, and 13, and for number
of examples, several values from N+ell=19404000 to N+ell=50328987 at 5% intervals, all
uncovered the same number of ambiguities. For the altered PL grammar set, I chose the
number of examples option with N+ell=19404000 for the main experiment.

CHAPTER 5. DIMENSIONING EXPERIMENTS 115

dynamicn Depth
dynamic1 dynamic2 dynamic3 dynamic4

(22, 194) (16, 192) (24, 193) (25, 190)
(19, 192) (28, 190)
(22, 192) (31, 190)

(20, 191) (14, 190) (22, 193) (23, 187)
(21, 191) (15, 192) (23, 194)] (24, 190)
(23, 192)] (17, 190) (25, 193) (26, 191)]

(24, 191) (18, 192) (26, 192) (27, 190)
(20, 191) (29, 190)
(21, 192) (30, 189)
(23, 191) (32, 189)
(24, 191) (33, 187)

]
Better solution found from the additional tool runs.

Table 5.21: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the SinBAD ’s backends – dy-
namic1 , dynamic2 , dynamic3 , and dynamic4– depth option for the mutated grammar set. Pair
value (D, f) denote the depth D sampled and its fitness value.

For the mutated grammar set, the length (with ellipsis unset) option uncovered the most
number of ambiguities. All values sampled between 12 and 22 with the exception of 14
(which found one less ambiguity) performed well. For the main experiment, I had to pick
a value for the length option. So, I looked at the results for the length option for the
mutated grammar set from both the crude and the fine dimensioning run: in both cases,
the distribution seems to plateau at ≈ len=12. For the main experiment, since I run my
tool for much extended time limits, I felt that the distribution might marginally shift to
the right, and so I went with len=18.

Table 5.22 shows the best performing run-time option and its value for AMBER for each
grammar set.

Boltzmann Altered PL Mutated

Examples+Ellipsis Examples Length
(N=27593602) (N=19404000) (len=18)

Table 5.22: AMBER: the best performing run-time option and its value (in brackets) for
each grammar set.

CHAPTER 5. DIMENSIONING EXPERIMENTS 116

5.12.2 AmbiDexter

For AmbiDexter for the Boltzmann grammar set, the option ‘search by incremental length’
with no filter set performed the best. I go with this option and its value for the main
experiment.

For the altered PL grammar set, both the options (search by incremental length and
length) performed equally well. For search by incremental length, the best performing
filters were LR0, SLR1, and LALR1. For the length option, the best performing values
were len=14–15 (with filter=LR0), len=14–24 (with filter=SLR1), and len=14–19 (with
filter=LALR1). For the main experiment, I chose the tool option ‘search by incremental
length’ for filter=LALR1. Since I run my tools for much extended limits for the main
experiment, I felt that the most powerful filter LR1 has a good a chance of performing
well, so I additionally invoked AmbiDexter for option ‘search by incremental length’ for
filter=LR1.

For the mutated grammar set, the search by incremental length option for filters LR0 and
LALR1 performed the best. The more precise a filter is, the longer it takes to prune out
the unambiguous subsets of the grammar. Since I run my tools for much extended limits
for the main experiment, I felt that the more powerful filter of the two – LALR1 – has as
good a chance of performing well, if not better, than LR0; I chose LALR1 for the main
experiment.

Table 5.23 shows the best performing run-time option and its value for AmbiDexter for
each grammar set.

Boltzmann Altered PL Mutated

Incremental length Incremental length Incremental Length
(ilen+filter=None) (ilen+filter=LALR1,LR1) (ilen+filter=LALR1)

Table 5.23: AmbiDexter: the best performing option and its value (in brackets) for each
grammar set.

5.12.3 SinBAD’s backends

For the Boltzmann grammar set, dynamic3 was the best performing backend for D=16.
For the altered PL grammar set, all the backends except dynamic2 found all the ambigui-
ties. For the altered PL grammar set, I chose dynamic3 forD=11 for the main experiment.
For the mutated grammar set, dynamic2 rws was the best performing backend for D=20
and W=0.036382.

Table 5.24 shows the best performing run-time option and its value for each grammar set.

CHAPTER 5. DIMENSIONING EXPERIMENTS 117

Boltzmann Altered PL Mutated

dynamic3 dynamic3 dynamic2 rws

(D=13) (D=11) (D=20, W=0.036382)

Table 5.24: SinBAD ’s backends: the best performing backend and their run-time values
of D and weight W (in brackets) for each grammar set.

5.13 Summary

In this chapter, I uncovered the best performing run-time option for each tool and for
each grammar set. First, I presented my experimental suite describing each of my tool
and that various run-time options that it supports. I then presented a novel search-based
approach to explore the solution space of a tool option to uncover its best performing
run-time value. The best run-time option and its value for each tool is executed on a
much larger grammar corpus in the main experiment. In the following chapter, I present
my main experiment.

Chapter 6

Main Experiment

This chapter presents the largest ambiguity detection tool experiment to date. The main
experiment uses the best performing run-time option for each tool (as uncovered by the
fine dimensioning experiment), on a much larger grammar corpus (roughly 5 times bigger
than the grammar corpus used for the fine dimensioning experiment).

The first part of this chapter covers the main experiment: its methodology; results; and
an examination of the strengths and the weaknesses of each ambiguity tool. The second
part introduces the validation experiment and discusses the threats to validity of the main
experiment.

6.1 Experiment Methodology

The main experiment uses the best performing run-time option for each tool on the Boltz-
mann, altered PL, and the mutated grammars. The options for AMBER, AmbiDexter
and SinBAD are shown in Tables 5.22, 5.23, and 5.24 respectively (ACLA doesn’t support
additional options, so was invoked as-is). Table 5.1 shows the size of each set of grammars.

Since grammars can specify infinite languages, grammar ambiguity tools can run forever.
I am therefore also interested in how long it takes each tool to give quality results. For
the main experiment, I therefore run each tool for 10, 30, 60, and 120 seconds, enforcing
the limit with the timeout tool. In most cases, tools have clearly reached a point of
diminishing returns by the upper time limit; in a few cases where manual inspection
showed that this point had not been reached, I made additional runs with time limits of
300 and 600 seconds. All the data from my main experiment are available for download
from: https://figshare.com/s/d6ef0a1a3de26f6ca218.

118

https://figshare.com/s/d6ef0a1a3de26f6ca218

CHAPTER 6. MAIN EXPERIMENT 119

10 30 60 120
450

900

1,350

1,800

2,250

2,700

3,150

Time [seconds]

A
m
bi
gu

it
ie
s
fo
un

d

Boltzmann grammars (number of ambiguities out of 3300)

ACLA
AMBER (N=75320034)
AmbiDexter (ilen+unf)
dynamic3 (D=16)

Figure 6.1: Number of ambiguities found for Boltzmann sampled grammars (3300 gram-
mars).

10 30 60 120

5

10

15

20

Time [seconds]

A
m
bi
gu

it
ie
s
fo
un

d

Altered PL grammars (number of ambiguities out of 20)

ACLA
AMBER (N=19404000)
AmbiDexter (ilen+LR1)
dynamic3 (D=11)

Figure 6.2: Number of ambiguities found for altered PL grammars (20 grammars).

6.2 Results

6.2.1 Tool Independent Analysis

Figures 6.1, 6.2, and 6.3 show the results of the main experiment for each grammar set.
The results from the main experiment show that four of my grammar sets are highly am-
biguous: Boltzmann grammars (88%), ‘add empty alternative’ mutated grammars (74%),

CHAPTER 6. MAIN EXPERIMENT 120

10 30 60 120

75

125

175

225

Time [seconds]

A
m
bi
gu

it
ie
s
fo
un

d
Add Empty (303)

10 30 60 120

40

70

100

130

Time [seconds]

Mutate Symbol (500)

10 30 60 120

20

40

60

80

Time [seconds]

A
m
bi
gu

it
ie
s
fo
un

d

Add Symbol (500)

10 30 60 120

75

125

175

225

Time [seconds]

Delete Symbol (500)

10 30 60 120

75

125

175

225

Time [seconds]

A
m
bi
gu

it
ie
s
fo
un

d

Switch Symbol (500)

ACLA
AMBER (len=18)
AmbiDexter (ilen+LALR1)
dynamic2 rws (D=20;W=0.0363825)

Figure 6.3: Number of ambiguities found for mutated grammars. The number in brack-
ets in the title of each graph indicate the total number of grammars evaluated for that
mutation type.

CHAPTER 6. MAIN EXPERIMENT 121

ACLA AMBER AmbiDexter SinBAD

Sen Amb Sen Amb Sen Amb Sen Amb

Boltzmann 20 20 49 37 62 41 12518977 754658
Altered PL 11 11 37 19 15 15 768 402
Mutated 14 14 18 18 8214 26 1597252 7183

Table 6.1: Maximum sentence (‘Sen’) and ambiguous fragment (‘Amb’) length (defined
as the number of tokens) detected by each tool using their best performing options when
run for 120s.

‘delete symbol’ mutated grammars (41%), and ‘switch symbol’ mutated grammars (41%).
Manual observation of these highly ambiguous grammar sets shows that many grammars
contained in these sets have multiple ambiguities. A grammar has multiple ambiguity if it
has more than one ambiguous subset. 36% of Boltzmann grammars contained 2 or more
ambiguities per grammar. For mutated grammars the figures are: 61% for ‘add empty al-
ternative’; 57% for ‘delete symbol’; and 43% for ‘switch symbol’. In analysing the results,
only in one case I had to rely on the results from the fine dimensioning experiment. In
case of AmbiDexter, the best performing option (as uncovered by the fine dimensioning)
for Boltzmann grammars was the unfiltered option. Since for the Boltzmann grammars
for the main experiment, unfiltered option was used, to collect data on the effectiveness
of AmbiDexter’s filtering technique on Boltzmann grammars, the results from the fine
dimensioning experiment were used.

6.2.2 Tool Overview

Table 6.1 shows the sentence and the ambiguous fragment length detected by each tool
using its best performing run-time option for each grammar set. As is evident from the
table, the SinBAD ’s backends generate much longer sentences and ambiguous fragments
compared to the other tools. The tools are ordered by the number of ambiguities found
across all grammar sets. Out of 5623 grammars explored, the number of ambiguities found
by each tool (from lowest to highest) are: ACLA (1213), AmbiDexter (2327), AMBER
(3168), SinBAD ’s backends (3787). In the rest of this section, I explore what the results
mean for each tool starting with the tool ACLA.

6.2.3 ACLA

ACLA’s approach to ambiguity detection is based on two linguistic properties: vertical
and horizontal ambiguity. Vertical ambiguity means that during the parsing of a string,
there is a choice between the alternatives of a non-terminal. Horizontal ambiguity means

CHAPTER 6. MAIN EXPERIMENT 122

that during the parsing a string according to an alternative, there is a choice in how it can
be parsed. ACLA detects ambiguity in a grammar by iterating through its non-terminals,
and checking their language for vertically or horizontally ambiguous strings. Given a
grammar, ACLA will report it to be ambiguous, unambiguous, or possibly ambiguous
(that is, it is unsure if the grammar is ambiguous). If a grammar is found to be ambiguous,
ACLA reports the shortest possible example of vertical or horizontal ambiguity.

My results show that ACLA was unsure whether the grammar was ambiguous or otherwise
on 75% and 62% of the Boltzmann and the mutated grammars respectively. For the altered
PL grammars, on 7 of the 20 grammars, ACLA was unsure whether the grammar was
ambiguous or otherwise. For unambiguity, ACLA reported one Boltzmann and 3 mutated
grammars to be unambiguous. For Boltzmann grammars, ACLA generated much longer
sentences, and so it uncovered marginally longer ambiguous fragment too (see Table 6.1).
In most cases, where the ambiguous subset is deeply nested, ACLA is unsure if the
grammar is ambiguous.

For Boltzmann grammars, the data (see Figure 6.1) suggested that, given additional time,
ACLA might uncover further ambiguities. When run for 300s, ACLA found additional
4% ambiguities in this set of grammars; running for 600s found only an additional 4. No
additional runs were performed on the altered PL or mutated grammars as these had
already reached a clear point of diminishing returns in the main experiment.

6.2.4 AmbiDexter

AmbiDexter detects ambiguity by first pruning out the unambiguous subsets of a gram-
mar and then exhaustively searching the remaining search space. AmbiDexter is effective
for altered and mutated PL grammars, but is less effective for Boltzmann grammars.
For Boltzmann and altered PL grammars, the results (see Figures 6.1 and 6.2) for the
experiment suggested that given additional time, AmbiDexter might uncover further am-
biguities. So, for both Boltzmann and altered PL grammars, I ran AmbiDexter for an
extended time limit of 300s. For Boltzmann grammars, AmbiDexter uncovered an addi-
tional 3% ambiguities. Since the additional number of ambiguities found was significant, I
further ran AmbiDexter for Boltzmann grammars for a much extended time limit of 600s.
AmbiDexter uncovered only 1.7% additional ambiguities. Since the number of additional
ambiguities found was much lower, I didn’t explore further. For altered PL grammars,
AmbiDexter found the one remaining ambiguity.

AmbiDexter does well on PL grammars for two reasons: first, filtering of unambiguous
fragments was very effective on PL grammars; and second, PL grammars contain short
ambiguous subsets. I now explain these two aspects in detail.

CHAPTER 6. MAIN EXPERIMENT 123

6.2.4.1 Filtering Performance

AmbiDexter’s filtering technique was very effective on the PL grammars. For mutated
grammars, where LALR1 was the best performing filter, on average, 74% of the grammar
rules were identified to be unambiguous. For altered PL grammars, where LR1 was the
best performing filter, 54% of the grammars rules were identified to be unambiguous.
Therefore, in both cases, AmbiDexter operated on a much smaller state space, and so
performed well. For Boltzmann grammars, since the best performing option was ‘search
by incremental length’ with no filter set, AmbiDexter’s exhaustive search had to operate
on the whole of the grammar space, and so struggled. The corollary to effective filtering
in the case of mutated PL grammars is that there were significant number of cases where
all of a grammars’ rules were filtered out (i.e. the grammar is unambiguous). For mutated
grammars, 58% of the grammars were found to be unambiguous.

To give the reader a rough idea on why AmbiDexter’s filtering technique was less effective
on Boltzmann grammars, I refer to the filtering performance of the AmbiDexters’ run
from the fine dimension experiment. Based on the best performing filter – SLR1 – for
Boltzmann grammars, only 17% of the grammars’ rules were identified to be unambiguous.
As a result, the percentage of the grammars that were found to be unambiguous was only
2%. This ties in with the observation that a Boltzmann grammar contains multiple
ambiguities (see Section 6.2.1) spread across its grammar rules which then limits the
portion of the grammar that can be proven to be unambiguous.

There was noticeable a difference in the filter execution time between the grammar sets. To
analyse filter execution time for Boltzmann grammar, the data from the fine dimensioning
experiment was used. The average time (in seconds) taken to filter out unambiguous
subsets of a grammar for Boltzmann, mutated and altered PL grammars were 0.9, 2.1
and 4 respectively. The time taken to filter out the unambiguous subsets of a grammar
depends on the precision of the filter applied. The higher the precision of the filter, the
longer it takes to prune out the unambiguous subsets. Therefore, in the case of altered
and mutated PL grammars, where the respective filters applied were LALR1 and LR1,
relatively more powerful filters than SLR1, the filter execution time was higher.

6.2.4.2 Length of Ambiguous Fragments

Mutated PL grammars contain marginally shorter ambiguous fragments (mean 6.4) than
Boltzmann grammars (mean 7.5), and so AmbiDexter was quick to find them. For altered
PL grammars, the mean ambiguous fragment length was 9.

There was marginal difference in the length of the sentences generated between grammar
sets. The mean sentence length for Boltzmann, altered PL and mutated grammars were

CHAPTER 6. MAIN EXPERIMENT 124

11, 10 and 7.51 respectively.

6.2.5 AMBER

AMBER performs extremely well on the Boltzmann grammars, but less well on manu-
ally altered or mutated grammars. AMBER uses an exhaustive approach to ambiguity
detection, systematically enumerating strings for a given grammar. There are two pos-
sible reasons why AMBER does well on Boltzmann grammars. First, these grammars
contain multiple ambiguities (see Section 6.2.1), and so AMBER has a greater chance
of finding one of them. Second, the ambiguous subsets found are easily reachable, in the
sense that they are referenced from very near the start of the grammar. For instance,
in the case of the altered PL grammar “Java.2”, the ambiguous subset originates from
the rule compilation_unit that is close to the start rule, and so AMBER is quick to
find ambiguity. In the case of Pascal.2, the ambiguous subset originates from within an
expression rule set (term) that is, frequently referenced, and so AMBER is quick to find
it. However, in the case of “Java.1”, where the ambiguous subset is nested deep within
the cast_expression rule and is hard to reach, AMBER does not find this ambiguity
within our time limits.

6.2.6 SinBAD’s Backends

As Table 6.1 shows SinBAD ’s dynamic backends generates much longer sentences than
other tools. This allows it to find longer and/or deeply nested ambiguous subsets than
other tools. The average sentence and ambiguous fragment length for each grammar
set are: 134257 and 614 for Boltzmann grammars; 151 and 60 for altered PL gram-
mars; and 825 and 134 for the mutated grammars. Since SinBAD ’s backends use a
non-deterministic approach for generating sentences, there can be significant variation in
the sentence and ambiguous fragment length from run to run. I now explain why Sin-
BAD ’s non-deterministic breadth-based approach to ambiguity detection performs better
than some of the deterministic depth-based approaches using an example.

6.2.6.1 Depth. vs. Breadth – a Comparison

As an example, I use the altered PL grammar ‘C.2’ from the experimental suite. For the
example grammar, none of the depth-based approaches detected ambiguity for a time limit
of t=120s, whereas all of the SinBAD ’s backends did. The ambiguous fragment length for
my example grammar was manually found to be 12. For my example grammar, AMBER

1In calculating the average, I had to exclude two of the grammars with exceedingly high sentence
lengths (2143 and 8214), as including them would not be a true reflection of the sentence length of the
vast proportion of the grammars.

CHAPTER 6. MAIN EXPERIMENT 125

with length=12 for a time limit of 2 hours explored just over 1.2 × 109 examples but
didn’t find any ambiguity. Running AmbiDexter with length=12 (for unfiltered version)
didn’t find ambiguity even after a day. The relevant parts of the grammar that contribute
to ambiguity is shown below:

1 file: external_definition | ... ;
2 external_definition: function_definition | ... ;
3 function_definition: declarator function_body | ... ;
4 declarator: declarator2 | ... ;
5 declarator2: declarator2 ’(’ parameter_identifier_list ’)’
6 | declarator2 ’(’ parameter_type_list ’)’
7 | declarator2 ’(’ ’)’
8 | declarator2 ’[’ constant_expr ’]’
9 | declarator2 ’[’ ’]’

10 | ’(’ declarator ’)’
11 | identifier ;
12 function_body: compound_statement | declaration_list compound_statement ;
13 compound_statement: ’{’ declaration_list statement_list ’}’
14 | ’{’ declaration_list ’}’
15 | ’{’ statement_list ’}’
16 | ’{’ ’}’ ;
17 statement_list: statement_list statement | statement ;
18 statement: jump_statement | selection_statement | compound_statement | ... ;
19 selection_statement: IF ’(’ expr ’)’ statement
20 | IF ’(’ expr ’)’ statement ELSE statement
21 ...

The grammar contains the classic nested if else ambiguity. The source of the am-
biguity is located deep within the grammar, in the first and the second alternative
of the ‘selection_statement’ rule (lines 19 and 20). The path to the non-terminal
‘selection_statement’ from the start symbol ‘file’ is as follows: file→ external_def
inition→ function_definition→ function_body→ compound_statement→ state
ment_list → statement → selection_statement. When looking from the top level of
the grammar, the ambiguity is located in the section of the grammar that derives from the
non-terminal ‘function_body’ referenced in the first alternative of rule ‘function_defin
ition’ (line 3).

It is evident from the grammar that the ambiguous subset is located at a fair ‘distance’
from the start rule of the grammar. In a depth-based approach, when the sentence genera-
tor starts deriving from the start rule of the grammar, it explores each of the non-terminals
referenced systematically. Each non-terminal is explored by exhaustively searching each
of its alternatives. For the example grammar, when the rule ‘function_definition’ is
entered and its first alternative is being derived, the leftmost non-terminal declarator
is explored first by exhaustively searching each of its alternatives systematically. Since
‘declarator’ is recursive (declarator ⇒ declarator2 ⇒ declarator) and several of
the non-terminals that it references describe an infinite language, a depth-based search
gets stuck in exploring the grammar subsets related to the non-terminal ‘declarator’.
Within reasonable time limits, the search doesn’t get the opportunity to explore the gram-
mar subsets reachable from the non-terminal ‘function_body’, and so misses out on the
ambiguity.

CHAPTER 6. MAIN EXPERIMENT 126

SinBAD ’s backends use a non-deterministic breadth-based approach to ambiguity de-
tection. Whereas the extant depth-based approaches focus on a specific subset of the
grammar, my breadth-based approach aims for grammar coverage. Given a grammar,
SinBAD ’s sentence generator builds a sentence by picking alternatives randomly, which
allows it to explore as much of a grammars’ rules as possible without focussing on any
specific subset in exhaustive detail. When the threshold depth D is reached, favouritism
is applied to encourage sentence termination.

For my example grammar, the sentence generator starts generating a sentence from the
start rule of the grammar by picking alternatives randomly. When the rule ‘function_def
inition’ is entered and its first alternative is (randomly) picked, the sentence generator
explores the rule ‘declarator’ and the grammar subsets reachable from it, for a while.
In exploring the rule ‘declarator’, the sentence generator recurses into the grammar
deep enough but not too deep and when the threshold depth D is reached, favouritism
ensures that ‘declarator’ is quickly derived. The sentence generator then explores the
rule ‘function_body’ and the grammar subsets reachable from it by picking alterna-
tives randomly. Since the rule ‘selection_statement’ containing the ambiguity is easily
accessible (i. e. several paths from ‘function_body’ lead to ‘selection_statement’), am-
biguity is found fairly quickly. Thus by simply exploring a grammar in breadth through a
combination of random selection and ‘quickly deriving’ alternatives, SinBAD ’s backends
are able to detect ambiguity much quicker than other depth-based approaches.

6.2.6.2 Ambiguities that SinBAD Backends Didn’t Find

Although SinBAD generally finds larger numbers of ambiguous grammars, it is not al-
ways a pure superset. For example, for the Boltzmann grammars, AMBER uncovered
2, and AmbiDexter 1, grammar that dynamic3 did not. For 3 mutated grammars that
AmbiDexter found as ambiguous, the best performing backend, dynamic2 rws , failed to
find any. In case of ACLA, SinBAD ’s backends found all of the grammars to be am-
biguous that ACLA detected to be ambiguous. I now provide a brief explanation on why
SinBAD ’s backends failed to detect ambiguity in some of the grammars that other tools
found to be ambiguous.

Of the 2 Boltzmann grammars that AMBER found to be ambiguous, on one of them
dynamic3 generated 232 sentences but didn’t uncover any ambiguity. For this grammar,
AMBER generated over 40 million examples in order to uncover ambiguity. For the
other, dynamic3 got stuck in generating an extremely long sentence. dynamic3 generated
a sentence with 10,666,503 words, spending 6 seconds on sentence generation and 94
seconds on parsing the sentence. For this grammar, AMBER found the ambiguity in just
over 700,000 examples. Of the one Boltzmann grammar that AmbiDexter found to be
ambiguous, dynamic3 generated 3609 sentences but didn’t uncover any ambiguity. For

CHAPTER 6. MAIN EXPERIMENT 127

this grammar, the ambiguous subset was by no means long (len=17) and deeply nested
but dynamic3 was unable to detect it.

For the 3 mutated grammars that AmbiDexter found to be ambiguous and dynamic2 rws

failed to detect any, in all three cases, dynamic2 rws generated over 2K sentences but failed
to detect ambiguity. In all three cases, the ambiguous subsets were short (len < 9) but
deeply nested.

6.3 Validation Experiment

In order to ensure that the results of Figures 6.1, 6.2, 6.3 scale to larger sets of grammars,
I used the best performing backend for the Boltzmann and the mutated grammars to
perform a validation experiment on a much larger set of grammars (see Table 5.1). The
number of ambiguities found for 120 seconds were 88% (Boltzmann) and 75%, 24%,
14%, 37% and 39% (for mutated types: add empty alternative, mutate symbol, add
symbol delete symbol and switch symbol respectively). The proportion of ambiguities
found in our validation experiment is close to the number of ambiguities found in the
main experiment (see Figures 6.1 and 6.3). All the data involved are available from:
https://figshare.com/s/55805aaa7e56f8e36d8d.

6.4 Validating the Hypotheses

In Section 1.2, I stated two hypotheses which informed my work. In this section, I revisit
the hypotheses in the light of my results.

Hypothesis H1 postulates that “covering a grammar in breadth is more likely to uncover
ambiguity than covering it in depth.” The non-deterministic approach used by SinBAD ’s
backends tend to naturally generate sentences which cover much larger portions of a gram-
mar than previous approaches. It is therefore more successful at uncovering ambiguity
against my grammar corpus than other tools. Although non-determinism clearly plays its
part, I believe that SinBAD ’s backends coverage is key and strongly validates hypothesis
H1.

Hypothesis H2 postulates that “PL grammars are only a small step away from being
ambiguous.” The mutated grammars are my attempt to explore this hypothesis and as
the validation experiment shows, just over a third of mutations to real PL grammars result
in dynamic2 rws ’s detecting ambiguity. This proportion is a lower-bound: it is possible
that there is further ambiguity in the mutated grammars that dynamic2 rws (and, indeed,
any other tool) does not discover. I consider this validation of hypothesis H2.

https://figshare.com/s/55805aaa7e56f8e36d8d

CHAPTER 6. MAIN EXPERIMENT 128

6.5 Threats to Validity

The most obvious threat to the validity of my results are the grammars used.

In a previous experiment [39] I used a hand-written generator to create random grammars.
In this thesis, I created a Boltzmann sampler to reduce the chances of bias in my hand-
written generator. Interestingly, this made relatively little difference to the number of
ambiguous grammars I found. However, it is impractical to generate completely arbitrary
grammars, since they have no size limit. My Boltzmann specification is therefore geared
towards generating grammars which are “somewhat PL like”. It is possible that it still
produces overly biased grammars, particularly as I am forced to apply filters to remove
some grammars I consider irrelevant or unrepresentative. However, I believe that, overall,
it is more trustworthy than any previous random grammar generator.

The mutated grammars are also a potential threat to validity as I might have chosen
unrepresentative grammars as a base. Since they come from an external source, I have
some level of confidence in them.

Finally, there are two other threats to validity. The first is my use of the dimensioning
experiments to determine a reasonable set of run-time options for the various tools used.
The hill climbing technique could have continually got stuck in a local maxima. However,
the sheer quantity of results that I have got from my hill climbing run lessens the chances
of this dominating my results. The second is that it is also possible that the grammars
used in the fine dimensioning experiment were unrepresentative of those used in the main
experiment, though simple measurements suggest this is unlikely. The percentage of
ambiguous Boltzmann grammars for the fine dimensioning and main experiments are
identical (88% for both). The percentage of ambiguous mutated grammars, though not
identical, were all similar: add empty alternative (70% and 74% for fine dimensioning and
main experiments respectively), mutate symbol (29% and 26%), add symbol (13% and
15%), delete symbol (47% and 41%), and switch symbol (39% and 41$).

6.6 Summary

In this chapter, I presented the results of my main experiment. I first outlined the setup of
the main experiment. I then presented the results of the main experiment and discussed
the strengths and the weaknesses of each tool in detail. To be reasonably sure that the
grammars I picked for the main experiment are not biased in any way, I ran a validation
experiment using the best performing backends on a much larger grammar corpus. The
results from the validation experiment confirmed that the proportion of the ambiguities
found on a larger set of grammars matches closely to the proportion of ambiguities found
by the main experiment.

CHAPTER 6. MAIN EXPERIMENT 129

Although SinBAD ’s backends are quick to detect ambiguity, the ambiguous fragments
that they uncover can often be exceedingly long (see Table 6.1). Long ambiguous frag-
ments invariably means deep and nested parse trees that are quite hard to understand.
Clearly a short ambiguous string must exist, since other tools in my experimental suite
are able to find them. There are a few possible solutions as to how to minimise the am-
biguous fragment before it is presented to the end-user. One possibility is to inspect the
ambiguous parses generated by a backend and pick the rules that contribute to ambiguity
to create a minimised grammar. The minimised grammar can then be fed back to the
backend that generated it or it can be fed to an external ambiguity detection tool for
further minimisation. I explore the first possibility in the following chapter.

Chapter 7

Minimising Grammar Ambiguity

This chapter presents a novel minimisation technique for grammars guided by ambiguity
detection. As noted in Chapter 6, SinBAD ’s backends often generates a long and a deeply
nested ambiguous fragment that is quite hard to understand. In order to present the user
with a shorter version of the ambiguity, I created a grammar minimiser. Since grammars
can contain infinitely long ambiguous subsets, it may not be always possible to minimise
a grammar. Therefore, the purpose of the minimiser is to identify as small an ambiguous
subset of the grammar as possible in the hope of discovering a short ambiguous string.
My results show that the minimiser does reasonably well at uncovering small ambiguous
subsets for grammars from my experimental corpus.

This chapter comes in two parts. The first part of this chapter introduces minimiser1 ,
a novel approach for minimising a grammar ambiguity. I then demonstrate grammar
minimisation using an example. The second part presents an experiment which evalu-
ates the effectiveness of my minimisation technique on a large grammar corpus from my
experimental suite.

7.1 Definitions

Before presenting my minimisation algorithm, I first introduce some brief definitions and
notations. The definitions from Section 3.4 are re-used and some additional notations are
defined.

A minimised grammar is denoted as Gm = 〈Nm,Tm,Pm,Sm〉 where Nm is the set of non-
terminals, Tm is the set of terminals, Pm is the set of production rules over Nm × (Nm ∪
Tm)* and Sm is the start non-terminal of the grammar. For a given grammar G, backend b,
threshold depth D, and weight W , the function dynamic(G, b,D,W) invokes the dynamic
backend b on grammar G for a threshold depth D and a probabilistic weight W , and
returns any ambiguity found. Although ambiguities can have infinite parses, for the
purposes of this section, I define ambiguity to be a pair of parse trees. Given an ambiguity

130

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 131

Algorithm 20 Algorithm to minimise a grammar using the minimiser1 minimiser.
1: function cfg-minimiser(G, b, D, W=none)
2: Gc ← G

3: ambsc ← none
4: while timeout not reached do
5: parses← dynamic(Gc, b,D,W)

6: if parses 6= none then
7: Gc ← concfg(parses)
8: ambsc ← ambstr(parses)
9: write(Gc, ambsc)

10: end if
11: end while
12: end function

p, the function ambstr(p) returns the string by concatenating the terminals from the leaf
nodes of its parse tree in a depth-first fashion, and the function concfg(p) returns a
grammar G constructed from p’s parse trees (i. e. the constructed grammar is a subset of
the original grammar). Given a grammar G and a string s, the function write(G, s) writes
the grammar G and the string s to disk.

7.2 The minimiser1 Minimiser

minimiser1 minimises a grammar by ambiguity detection using SinBAD . minimiser1
takes an iterative approach towards grammar minimisation, whereby in each iteration the
given grammar is explored for ambiguity in the hope of detecting a smaller ambiguous
subset. An iteration works as follows. The given grammar is explored for ambiguity
using the given SinBAD backend. On finding ambiguity, from the resulting parse trees, I
identify the (non-strict) subset of the grammar that gave rise to ambiguity. I then extract
that subset of the grammar and re-run the given SinBAD backend hoping to find a smaller
ambiguous subset. If an iteration doesn’t result in a smaller grammar, I still continue to
minimise in the hope that future iterations might uncover a smaller ambiguous subset.
minimiser1 is externally halted on reaching a certain time limit.

Algorithm 20 describes how a minimised grammar is constructed using the minimiser1
minimiser. The function CFG-MINIMISER is initialised with grammar G that is to
be minimised, the SinBAD backend b to be invoked, the threshold depth D, and the
probabilistic weight W .

Gc tracks the current minimised grammar, and is initialised to G. ambsc tracks the
current ambiguous fragment, and is initialised to none. The function dynamic is invoked
to launch the backend b on Gc for threshold depth D and probabilistic weight W , and

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 132

the parse trees returned are recorded in parses (line 5). The function concfg is invoked
on parses to construct the minimised grammar (line 7). The function ambstr is invoked
on the ambiguous parses parses to construct the ambiguous fragment (line 8). At the end
of each iteration, the current minimised grammar Gc and the ambiguous fragment ambsc
are written to the disk (line 9). The heuristic continues to iterate until a certain time
limit is reached and is externally halted.

To be sure that my grammar minimiser minimiser1 has not altered the ambiguity that
was contained in the original grammar, I perform a sanity check: the ambiguous fragment
generated by the minimisation is verified against the original grammar. I now outline my
approach for sanity checking minimiser1 ’s minimisation approach.

7.2.1 Sanity Checking minimiser1 ’s Grammar Minimisation

To sanity check minimiser1 ’s grammar minimisation, I re-use the ambiguous fragment
that it uncovered by minimisation during sentence generation. To do so, I make a small
change to the sentence generator that each of my backends use. The revised sentence
generator works as follows. Given a grammar, the sentence generator continues to pick
alternatives randomly. When the sentence generator recurses beyond a certain threshold
depth D, alternatives are favoured. The favouring of alternatives is specific to each back-
end and this had not changed. When a rule is entered, if the alternative picked contains
the sequence of symbols that contribute to ambiguity, then I don’t recurse into them.
Instead I derive them using the ambiguous fragment uncovered by the minimisation. If
the generated sentence is found to be ambiguous, then I am certain that the minimisation
has not altered the original ambiguity. The algorithm for the modified sentence generator
for one of the SinBAD ’s backend (dynamic3) is shown in Appendix D.

7.3 Minimisation using minimiser1– an Example

To show how minimisation operates, I use the Pascal grammar ‘Pascal.3’ from the exper-
imental corpus. This grammar contains the classic nested if-else ambiguity [25]. min-
imiser1 was invoked on the Pascal grammar using the dynamic3 backend for D=10 for a
total minimisation time limit of 5 seconds.

Table 7.1 shows an example run of the minimiser on the Pascal grammar. ‘Sen’ refers to
the sentence generated from the minimised grammar, and ‘Amb’ refers to the ambiguous
fragment contained within Sen. Sen is a necessary input to parse Amb relative to the
grammar. Note that while iterations never increase the Grammar size (though they may
reduce it), Sen and Amb may increase from one iteration to the next due to minimiser1 ’s
non-deterministic nature (as this may suggest, there is no relation between the Sen and
Amb from one iteration to the next). The minimised grammar at iteration N=2 is shown

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 133

Iteration Grammar Sen Amb

1 79 101 20
2 10 14 11
3 8 223 16
4 8 77 15
5 8 142 13
6 7 53 9
7 7 101 9

· · ·
22 7 21 9

Table 7.1: An example run of the minimiser showing, for each iteration, the grammar
size (‘Grammar’), sentence length (‘Sen’), and ambiguous fragment length (‘Amb’ where
Amb ≤ Sen) generated by minimiser1 . The first iteration corresponds to the unaltered
“Pascal.3” grammar which is gradually minimised over multiple iterations.

in Listing 7.1. For the minimised grammar, the uppercase symbols are terminals and the
rest of the symbols are non-terminals.� �

1 root: statement;
2 statement: IF expression THEN statement ELSE statement
3 | IF expression THEN statement
4 | REPEAT statements UNTIL expression
5 | ;
6 statements: statement;
7 expression: simple_expr | simple_expr relational_op simple_expr;
8 simple_expr: simple_expr add_op term | ‘-’ term | term;
9 relational_op: IN;
10 add_op: OR;
11 term: factor;
12 factor: unsigned_lit;
13 unsigned_lit: NIL;� �

Listing 7.1: The minimised Pascal grammar at N=2.

After further 20 iterations, at N=22, the minimised grammar looks much simpler (see
Listing 7.2) containing just 7 rules and 9 alternatives. At the end of the time limit,
minimiser1 had reduced the grammar by 91% and the ambiguous fragment by 55%.

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 134� �
1 root: statement;
2 statement: IF expression THEN statement ELSE statement
3 | IF expression THEN statement
4 | ;
5 expression: simple_expr;
6 simple_expr: ‘-’ term;
7 term: factor;
8 factor: unsigned_lit;
9 unsigned_lit: NIL;� �

Listing 7.2: The minimised Pascal grammar at N=22.

7.4 Evaluating minimiser1– Minimiser Experiment

The aim of my minimiser experiment is to evaluate the effectiveness of the minimiser1
minimiser on grammars from my experimental suite. To evaluate minimiser1 , I use the
grammar corpus from the main experiment (see Table 5.1). For each grammar, the run
is split into two parts: the first part minimises the grammar; and the second part verifies
the ambiguous fragment generated from the minimisation.

7.4.1 Run-Time Values

Evaluating minimiser1 requires various run-time values to be set. My choice of the
run-time values for minimiser1 is based on the results from my main experiment (see
Section 6.2). To evaluate minimiser1 , the various run-time parameters that need setting
include: backend b for generating a sentence; threshold depth D and the probabilistic
weight W for occasionally picking an alternative other than the low scoring alternative;
and a maximum time limit t to terminate minimiser1 . For each grammar set, the best
performing backend and the best performing value of D andW from the main experiment
is chosen. The best performing backend for Boltzmann and altered PL grammars were
dynamic3 (for D=16) and dynamic3 (for D=11) respectively. For mutated PL grammars,
the best performing backend was dynamic2 rws (D=20, W=0.036382).

The results from my main experiment revealed that my backends uncover reasonably
good number of ambiguities within a time limit of 10 seconds. For the minimisation, I
give it an additional 20 seconds, and so for the minimiser experiment I set t=30. For
verification, I invoke the modified sentence generator for dynamic3 for the Boltzmann
and the altered PL grammars, and dynamic2 rws for the mutated PL grammars for a time
limit of 30 seconds. The results of the minimiser experiment can be downloaded from
https://figshare.com/s/f8d177a041dfa0e902ff.

I now share the results from the minimiser experiment.

https://figshare.com/s/f8d177a041dfa0e902ff

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 135

Boltzmann Altered PL Mutated

Grammar 63% 89% 87%
Sen 99% 93% 98%
Amb 0% 0% 54%

Table 7.2: Median percentage decrease in grammar size (‘Grammar’), sentence length
(‘Sen’), and ambiguous fragment length (‘Amb’ where Amb ≤ Sen) detected by each tool
using their best performing options when run for 30s. Grammar size is defined as the
number of rules. A sentences’ length is defined as the number of tokens it contains. An
ambiguous fragment length is defined as the number of tokens that make up the ambiguity.

Boltzmann Altered PL Mutated

Decrease 44% 45% 69%
No change 36% 55% 23%
Increase 20% - 8%

Table 7.3: Effectiveness of minimiser1 in reducing ambiguous fragment length. Pro-
portion of grammars that resulted in reduced ambiguous fragment length (‘Decrease’),
no change (‘No change’), and increased ambiguous fragment length (‘Increase’) for each
grammar sets.

7.4.2 Minimiser Experiment – Results

Table 7.2 shows the median percentage decrease in grammar size, sentence and ambiguous
fragment length for each grammar set. Table 7.3 shows the effectiveness of minimiser1
in reducing the ambiguous fragment length for each grammar sets. For the grammar size,
the median percentage decrease refers to the difference in the number of rules between
the original and the final minimised grammar. For the sentence length, the median
percentage decrease refers to the difference in the length of the sentence that resulted in
ambiguity between the original and the final minimised grammar. For a given sentence
s, the ambiguous fragment refers to the subset of tokens from s that contributes to
ambiguity. For the ambiguous fragment length, the median percentage decrease refers to
the difference in the length of the ambiguous fragment uncovered between the original
and the final minimised grammar. I now discuss my results in detail.

7.4.2.1 Grammar Size

My results showed that minimiser1 was quite effective in minimising grammars across all
my grammar sets (see Table 7.2). For the PL grammars, the minimisation was marginally

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 136

better. The minimised grammars across the grammar sets were quite slim containing just
an alternative per rule. The median number of alternatives to the number of rules ratio
were 1.13 for Boltzmann grammars and 1.2 for (altered and mutated) PL grammars. My
results show that most of the grammar minimisation occurs during the first few iterations
of a run. That is, we reach a point of diminishing returns fairly soon. Across the grammar
sets, we reach a point of diminishing returns at N=5.

7.4.2.2 Sentence Length

minimiser1 was also quite effective in reducing the sentence length across all grammar
sets (see Table 7.2). In a small number of cases, minimiser1 generated relatively longer
sentences on the minimised grammars. The percentage of grammars for which minimiser1
generated longer sentences were 3.4% and 3.01% for Boltzmann and mutated PL grammars
respectively. For altered PL grammars, minimiser1 generated a longer sentence for just
one of the grammars. For one of the Boltzmann grammars (worse case), the sentence was
43 times longer. These figures were 1.15 and 37 for altered and mutated PL grammars
respectively. I shall cover the reason for the increased length shortly.

7.4.2.3 Ambiguous Fragment Length

minimiser1 was much more effective in uncovering shorter ambiguous fragments on mu-
tated PL grammars than on Boltzmann and altered PL grammars (see Table 7.2). For
the mutated grammar set, minimisation resulted in a shorter ambiguous fragment for a
large proportion of the grammars (see Table 7.3). Only in a small proportion of the cases
did the minimisation result in a longer ambiguous fragment. In case of both Boltzmann
and altered PL grammar sets, minimisation resulted in a shorter ambiguous fragment for
a smaller proportion of the grammars. For the Boltzmann grammar set, for a sizeable
proportion of the grammars, minimisation resulted in longer ambiguous fragments. For
the altered PL grammar set, for just over half the number of grammars, minimisation
didn’t result in a change to the size of the ambiguous fragments. A worse case example
where the minimisation resulted in a longer ambiguous fragment is: 440 times longer (for
Boltzmann grammar set); and 17.5 times longer (for mutated PL grammar set).

7.4.2.4 Longer Sentences and Ambiguous Fragments

My experiment revealed that the minimisation resulted in longer sentences and ambigu-
ous fragments for certain grammars. During minimisation, I invoke the best performing
SinBAD backend on the minimised grammar with the same value of D as the one used
for the original grammar. In some cases, where a large proportion of the rules in the
minimised grammar form a recursive loop, this results in SinBAD ’s backend to generate

CHAPTER 7. MINIMISING GRAMMAR AMBIGUITY 137

exceedingly long sentences. Long sentences invariably lead to long ambiguous fragments.
I now explain for an example grammar1 from my experimental corpus for which min-
imiser1 generates, more often than not, long sentences from its minimised version. The
minimised version for my example grammar is shown below:

root : FL;

FL : DWAB RRV;

DWAB : IKT;

IKT : | TK_GNEV;

RRV : LXMHF LQEY | TK_PTTLP;

LXMHF : DWAB TK_UY TK_EJQA RRV;

LQEY : TK_UY TK_UY JX RRV TK_PTTLP TK_NUJSX;

JX : TK_PTTLP;

In the above grammar, for rule RRV, each of the non-terminals from the first alternative
‘LXMHF LQEY’ is recursive: non-terminal LXMHF forms a recursion loop (RRV → LXMHF →
RRV); and non-terminal LQEY forms a recursion loop (RRV → LQEY → RRV).

During sentence generation, when the depth of recursion d<D, for rule ‘RRV’, the random
selection picks the first (recursive) alternative roughly half the number of times. When
the depth of recursion has reached beyond the threshold depth D, favouritism picks the
second alternative, allowing the sentence generation to unwind. When d<D again, the
random selection of the recursive alternative continues until d>D, and favouritism is
triggered. Sentence generation terminates when the non-recursive is picked in succession
by chance. The picking of the recursive alternative in half the number of cases during
random selection leads to long sentences, and invariably long ambiguous fragments too.
One possible solution to reduce the length of the sentences generated by the minimised
grammar is to invoke them with a lower value of D than the one used for the original
version. This will allow the sentence generation to apply favouritism much earlier thereby
encouraging sentence termination.

7.5 Summary

In this chapter, I presented minimiser1 , a novel search-based minimiser for grammars
guided by ambiguity detection. I then presented my experimental evaluation of min-
imiser1 on a large grammar corpus to measure its effectiveness in grammar minimisation.
My results show that minimiser1 was quite effective at minimising both the ambiguous
input and the subset of the grammar identified as containing the ambiguity.

1https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/12/34.acc

https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/12/34.acc

Chapter 8

Conclusions

8.1 Conclusions

In this thesis, I introduced the concept of a search-based approach to CFG ambiguity
detection with the SinBAD tool and its heuristic driven backends. Using the largest
grammar corpus to date, I showed that SinBAD ’s backends can detect a larger number
of ambiguities than previous approaches.

The key to SinBAD ’s success is the use of non-determinism in the backends, which has
several surprising consequences. It freed me from having to design many complex heuris-
tics. The only additional requirement is the need to terminate the sentence generator.
By applying a series of gradually better heuristics that favour easily derived grammar
subsets, I showed that the sentence generator is able to terminate. This in turn allows
the backends to explore a much larger portion of a grammar than previous approaches.
Whereas the extant deterministic approaches detect ambiguity by generating lots of short
sentences typically containing tens of tokens, SinBAD ’s backends detect ambiguity by
generating long sentences that can easily contain hundreds of tokens. This then allows
SinBAD ’s backends to uncover ambiguous fragments nested deep within a grammar. My
results show that SinBAD ’s non-deterministic breadth-based backends uncovered 16%
more ambiguities than the deterministic approaches. In essence, my results suggest that
covering a grammar’s state space in breadth is more important than covering it in depth.

I also introduced two new ways of generating large grammar corpuses: Boltzmann sam-
pling and grammar mutation. The grammars created using Boltzmann sampling were
highly ambiguous and thus not entirely representative of PL grammars. The mutated
grammars, on the other hand, are representative of PL grammars although different mu-
tations lead to different degrees of ambiguity. My experience suggests that for uses that
require exploring a wide class of grammars, one should use Boltzmann sampling, whereas
for uses that require exploring PL grammars one should use grammar mutation.

My breadth-based ambiguity detection approach often uncovers ambiguous fragments

138

CHAPTER 8. CONCLUSIONS 139

that are long and deeply nested. The ambiguous fragment uncovered can easily exceed
hundreds of tokens. By using a search-based approach to grammar ambiguity minimisa-
tion, I showed that both the ambiguous input and the grammar portion that contributes
to ambiguity can be effectively minimised. My results show that the grammar size is
significantly reduced (by at least 60%) across grammar sets.

8.2 Future Work

Since the problem of ambiguity detection is inherently undecidable, there is always po-
tential to improve an ambiguity detection approach. An obvious approach would be to
experiment with a hybrid deterministic/non-deterministic approach, perhaps using some
of AmbiDexter or AMBER’s methods alongside some of SinBAD ’s methods.

Although my evaluation of the ambiguity detection tools is the largest to date, it is by
no means perfect. My cross ambiguity detection tool experiment evaluated four tools. I
believe that adding more ambiguity detection tools to my experimental suite would be a
significant improvement.

Another opportunity for future research is to extend the PL grammar corpuses in my
experimental suite. The current mutated PL grammar corpus was generated from a tiny
set of unambiguous grammars, which can easily lead to over-training. It would be useful,
though neither easy or pleasant, work to increase the size of this set by using more real
programming language grammars.

Appendices

140

Appendix A

Non-termination in dynamic2 –
Boltzmann Grammar

The relevant subset of the Boltzmann grammar1 from my experimental corpus that runs
into non-termination is shown below:

BDU : ... EURPA ‘Z’ TK_KI FUQR TK_GF | DSH P TK_SA BDU EGCB

For the example grammar, dynamic2 was invoked with D=10. For the rule BDU, for
the first alternative, FUQR was the hardest to derive symbol; for the second alternative,
since it is recursive, BDU was the hardest to derive symbol. Therefore, the score of the
first and second alternative is set by the score of the symbol FUQR and BDU respectively.
For a sentence generation run that didn’t terminate and ran out of stack, the number of
required recursive invocations to BDU until its score reached parity with FUQR’s score at
various points during sentence generation run, is shown in the Table A.1.

The first recursive cycle begins at d=45. Since d>D, favouritism will apply. When rule
BDU is entered, the second (recursive) alternative with the lower score (0.5) is picked.
A recursive cycle ensues: the symbol BDU is recursively called 5 times until BDU’s score
≥ FUQR’s score. Subsequently, when the rule BDU is entered, the first (non-recursive)
alternative gets picked, and the sentence generation unwinds from recursion.

The second recursive cycle begins at d=41. Since d>D, when rule BDU is entered, the
second (recursive) alternative with the lower score (0.125) is picked. This time, the
symbol BDU is recursively called 17 times until BDU’s score ≥ FUQR’s score. Subsequently,
when the rule BDU is entered, the first (non-recursive) alternative gets picked, and the
sentence generation unwinds from recursion.

As the sentence generation progresses, each time FUQR is picked and the sentence gener-
ation unwinds, the number of recursive calls to BDU that is needed for its score to reach

1https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/75/4.acc

141

https://github.com/nvasudevan/experiment/blob/master/grammars/boltzcfg/75/4.acc

APPENDIX A. NON-TERMINATION IN DYNAMIC2 – BOLTZMANN GRAMMAR142

FUQR BDU
depth (d) exited/entered score exited/entered score

45 1/6 0.8333 1/2 0.5
50 1/6 0.8333 1/7 0.8571

41 2/7 0.7142 7/8 0.125
58 2/7 0.7142 7/25 0.72

58 3/9 0.3 25/26 0.0384
107 3/9 0.3 25/75 0.3

57 4/10 0.6 75/76 0.0132
169 4/10 0.6 75/188 0.6010

56 5/11 0.5454 188/189 0.0052
281 5/11 0.5454 188/414 0.5458

62 6/12 0.5 414/415 0.0024
476 6/12 0.5 414/829 0.5006

60 7/13 0.4615 829/830 0.0012
770 7/13 0.4615 829/1540 0.4616

57 8/14 0.4285 1540/1541 0.0006
977† 8/14 0.4285 1540/2461 0.3742

†
The recursion limit of the Python stack was reached.

Table A.1: Table showing the required number of recursive invocations to BDU until
its score reaches parity with FUQR’s score at various points during a sentence genera-
tion run that didn’t terminate. For a given symbol s, its score is calculated as: (1-
(s.exited/s.entered)).

parity with FUQR’s, also increases. The number of recursive invocations to BDU until its
score reaches parity with FUQR’s score at various point during the sentence generation run
are 49, 112, 225, 416, 710, and 920. In the final case, the number of recursive invocations
(920) needed was high enough for the sentence generator to run out of stack.

Increasing the recursion limit of the underlying stack only prolongs the non-termination
problem. For a sentence generation run for the example grammar with D=10 and re-
cursion limit set to 10000, the number of times BDU entered into recursion was 341. The

APPENDIX A. NON-TERMINATION IN DYNAMIC2 – BOLTZMANN GRAMMAR143

number of recursive invocations to BDU just before the sentence generator ran out of
stack was 9360. The output from sentence generation for both examples sentences (for
recursion limit=1000 and 10000) can be downloaded from: https://figshare.com/s/
fa80114ab5233ed8ceba.

https://figshare.com/s/fa80114ab5233ed8ceba
https://figshare.com/s/fa80114ab5233ed8ceba

Appendix B

Crude Dimensioning – Altered PL
Grammars

Figure B.1 shows the results from the crude dimensioning run for AMBER length and
examples options, AmbiDexter length and the dynamicn backends for the altered PL
grammar set. Table B.1 shows the results from the crude dimensioning run for the dy-
namic2 rws backend for the altered PL grammar set.

W[\D 1 2 3 6 9 12 15 18 30 50

0.005 16 17 17 17 20 20 20 20 18 10
0.01 18 17 18 18 20 20 19 19

0.0105 18 17 18 18 20 20 20 20
0.011025 15 17 17 19 19 20 19 20
0.012127 15 18 18 17 20 20 20 20
0.013340 18 19 20 20
0.014674 16 19
0.016141 18

0.05 19 19 20 20 20 20 19 20 19 11
0.075 18 18 20 20 20 20 20 20 17 10
0.1 20 20 20 20 20 20 20 20 17 11
0.2 20 20 20 20 20 20 20 19 16 12
0.5 11 12 11 12 11 11 11 12 12 9

[Weights are approximated to the nearest hundred thousandth.

Table B.1: Crude dimensioning for the dynamic2 rws backend: the number of ambiguities
found for various D and W for altered PL grammars. Several combinations of D and W
found all the ambiguities.

For the AMBER and the AmbiDexter length option, additional tool runs were performed
for length len=30, 50, 75, 100, 150, 200, and 500. For the dynamicn backends, additional
tool runs were performed for depth D=30, 50, 75, 100, 150, 200, and 500. For dynamic4 ,

144

APPENDIX B. CRUDE DIMENSIONING – ALTERED PL GRAMMARS 145

20 21 22 23 24 25 26 27 28 29

4

8

12

String length

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Length (20)

len
len+ell

105 106 107 108 109 1010

7

8

9

10

11

12

13

14

Number of examples

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Examples (20)

N
N+ell

20 21 22 23 24 25 26 27 28 29
0

3

6

9

12

15

18

String length

A
m
bi
gu

it
ie
s
fo
un

d

AmbiDexter Length (20)

len len+LR0
len+SLR1 len+LALR1
len+LR1

20 21 22 23 24 25 26 27 28 29

4

8

12

16

20

Depth D

A
m
bi
gu

it
ie
s
fo
un

d

dynamicn (20)

dynamic1 dynamic2
dynamic3 dynamic4

Figure B.1: Crude dimensioning for altered PL grammars: the number of ambiguities
found by tool options, AMBER and AmbiDexter length, AMBER examples, and the
dynamicn backends. The number in brackets in the title of each graph indicate the
number of grammars.

APPENDIX B. CRUDE DIMENSIONING – ALTERED PL GRAMMARS 146

since the hill climbing run finished fairly early at a low value of D=6, the backend was
additionally invoked for D=15, and 25. For the dynamic2 rws backend, additional tool
runs were performed for combination of depths D=30 and 50 and weightsW=0.005, 0.05,
0.075, 0.1, 0.2, and 0.5. For AMBER examples, the hill climbing run required several
restarts. In both cases, with ellipsis set or otherwise, hill climbing was restarted 10 times.

From Figure B.1, we can see that the fitness distribution for tool option AMBER length
(with ellipsis set or otherwise) and AmbiDexter length (for unfiltered and for each filter)
is asymptotic. In case of AMBER length, just before the fitness distribution starts to
plateau, there seem to exist a small band in the solution space where the fitness peaks;
I explore this solution space in detail in fine dimensioning. For the AMBER examples
(with ellipsis set or otherwise), the fitness distribution appears to like a bell curve.

For the dynamicn backends, from Figure B.1, we can see that the fitness distribution is
a bell curve for dynamic1 , dynamic2 and dynamic4 . dynamic3 showed maximum fitness
even for low values of D. For all the dynamicn backends, as D increases, the fitness drops.
For the dynamic2 rws backend, the fitness distribution appears to look like a hill. As the
depth increases, the fitness ramps up for a while and then starts to dip. For each depth,
as the value of weight increases, the fitness ramps up for a while and then start to dip.
For each tool option, the solution space containing potential good solutions (indicated by
gray shaded region in Figure B.1) is explored in detail in fine dimensioning.

Appendix C

Fine Dimensioning – Altered PL
Grammars

Figure C.1 shows the results of the fine dimensioning run for the tool options AMBER
length, AMBER examples, AmbiDexter length, and the dynamicn backends for the al-
tered PL grammar set. Table C.1 shows the results of the fine dimensioning run for the
AmbiDexter incremental length option for the unfiltered and the filtered options for the
altered PL grammar set. Table C.2 shows the results of the fine dimensioning run for the
dynamic2 rws backend for the altered grammar set.

AmbiDexter ilen

- LR0 SLR1 LALR1 LR1

16 18 18 18 10

Table C.1: Fine dimensioning for AmbiDexter ilen: number of ambiguities found for the
unfiltered and the filtered options for the altered PL grammar set.

Table C.3 shows for the altered PL grammar set: the best length and the additional tool
runs performed for the AMBER length option; and the best N for the AMBER examples
option. For AMBER length (with ellipsis set or otherwise), the additional tool runs did
not uncover a better solution. For AMBER examples, I terminated the hill climbing run:
at N=412×106 (with ellipsis not set) and at N=118×106 (with ellipsis set).

Table C.4 shows the additional tool runs performed for the AmbiDexter length option
for the altered PL grammar set. For AmbiDexter length (unfiltered and for each filter)
option, several values of length uncovered maximum number of ambiguities. The list is
too exhaustive to mention it in the table, so I summarise it here: at the end of both the
hill climbing and the additional runs, for unfiltered, I ended up exploring all the values

147

APPENDIX C. FINE DIMENSIONING – ALTERED PL GRAMMARS 148

6 8 10 12 14 16 18 20

5

7

9

11

13

15

String length

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Length (20)

len
len+ell

106 107 108 109

5

7

9

11

13

15

Number of examples

A
m
bi
gu

it
ie
s
fo
un

d

AMBER Examples (20)

N
N+ell

6 9 12 15 18 21 24 27

3

6

9

12

15

18

String length

A
m
bi
gu

it
ie
s
fo
un

d

AmbiDexter Length (20)

len len+LR0
len+SLR1 len+LALR1
len+LR1

5 10 15 20 25 30

15

16

17

18

19

20

Depth D

A
m
bi
gu

it
ie
s
fo
un

d

dynamicn (20)

dynamic1 dynamic2
dynamic3 dynamic4

Figure C.1: Fine dimensioning for the altered PL grammar set: number of ambiguities
found by tool options, AMBER length, AMBER examples, AmbiDexter length, and the
dynamicn backends. The number in brackets in the title of each graph indicate the number
of grammars.

APPENDIX C. FINE DIMENSIONING – ALTERED PL GRAMMARS 149

W[\D 6 7 8 11

0.01 20 20 20 20
0.0105 20 20 20 20

0.011025 20 20 20 20
0.012127 20 20 19 20

[Weights are approximated to the
nearest hundred thousandth.

Table C.2: Fine dimensioning for the dynamic2 rws backend: the number of ambiguities
found by for various D and W for altered PL grammars. Several combinations of D and
W found all the ambiguities.

AMBER

len len+ell N N+ell

(11, 15) (11, 14) (81587796, 14)⊕ (19404000, 15)⊕

(9, 13) (9, 14) - -
(10, 13) (10, 14)
(12, 15) (12, 11)
(13, 15) (13, 11)
⊕ Several values of N uncovered maximum number of ambiguities.

Table C.3: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the AMBER length and the
examples option for the altered PL grammar set. Pair value (l, f) denote the length l sampled
and its fitness value. Pair value (N , f) denote the number of examples N sampled and its fitness
value.

between 8 and 20; and for each of the filters, I ended up exploring most of the values
between 9 and 27. Only for the unfiltered option, did the additional runs uncovered a
better solution for len=12 (ambiguities found=17).

Since the backends dynamic1 , dynamic2 , dynamic3 , and dynamic2 rws uncovered all the
ambiguities in the hill climbing run, additional tool runs were not performed. For dy-
namic4 backend, the hill climbing run uncovered maximum number of ambiguities (19)
for D=20, 23, 26, and 29. Additional tool runs were performed for D=18, 19, 21, 22, 24,
25, 27, 28, and 30. The additional runs did not uncover a better solution.

APPENDIX C. FINE DIMENSIONING – ALTERED PL GRAMMARS 150

AmbiDexter Length,

unf, LR0 SLR1 LALR1 LR1

(11, 16) (15, 18) (14, 18) (14, 18) (17, 10)

(12, 17)]

]
Better solution found from the additional tool runs.

,
AmbiDexter invoked with filter not set.

Table C.4: Best solution from the hill climbing run (shown in the top half of the table) and
additional tool runs (shown in the bottom half of the table) for the AmbiDexter length option
for the altered PL grammar set. Pair value (l, f) denote the length l sampled and its fitness
value.

Appendix D

Verifying minimiser1

Algorithm 21 describes how minimiser1 ’s grammar minimisation approach is verified
for the dynamic3 backend. The function START is initialised with grammar G, and
its minimised version Gm, the ambiguous fragment ambs generated by minimiser1 , the
threshold depth D beyond which alternatives are favoured.

In addition to the notations outlined in Section 7.1, I define one other notation. For
a given grammar G, and a given sequence of symbols syms, the function getalt(syms)
iterates through G’s rules and returns the position of the first occurrence of syms as a
tuple 〈r,alt,i〉, where r is the rule, alt is the alternative of rule r, and i is the index at
which the syms is positioned in alt.

The sequence of symbols syms that contribute to ambiguity is calculated from the start
rule of the minimised grammar (line 2). The occurrence of syms in G is obtained by in-
voking the function getalt (line 3). The function GENERATE is invoked to start sentence
generation from the start rule R(S) of the grammar, with d=0 (line 5). The original
GENERATE function (see Algorithm 9) has been modified to include two changes. First,
the modified GENERATE function accepts two additional parameters: the tuple 〈r̂,âlt,̂i〉
containing the reference to the sequence of symbols that contribute to ambiguity; and
the pair (syms, ambs). Second, the modified GENERATE function invokes the function
INSERT-AMBS when r̂ is visited to insert the ambiguous fragment ambs into sentence
sen (lines 9 and 10) .

The function INSERT-AMBS is initialised with grammar G, sentence sen, current depth
of recursion d, threshold depth D, the tuple 〈r̂,âlt,̂i〉, and the pair (syms, ambs).

j tracks the position of the current symbol in the alternative that is being derived (line
38). Each symbol from the alternative âlt is sequentially explored. For each symbol sym
that precedes or succeeds syms, if sym is a non-terminal, the function GENERATE is
invoked (lines 40–43); if sym is a terminal then it is appended to the sentence sen (line
45). To derive the sequence of symbols syms, the string ambs is appended to sentence

151

APPENDIX D. VERIFYING MINIMISER1 152

sen (line 49). If the generated sentence is ambiguous, then minimiser1 ’s minimisation
approach has been verified.

APPENDIX D. VERIFYING MINIMISER1 153

Algorithm 21 Algorithm to verify minimiser1 using the dynamic3 backend
1: function start(G, Gm, ambs, D)
2: syms← R(Sm).seqs[0] . Gm = 〈Nm,Tm,Pm,Sm〉
3: 〈r̂,âlt,̂i〉 ← getalt(syms)
4: sen← []
5: generate(G, R(S), sen, d=0, D, 〈r̂,âlt,̂i〉, (syms, ambs))
6: end function

7: function generate(G, rule, sen, d, D, 〈r̂,âlt,̂i〉, (syms, ambs))
8: d← d+ 1

9: if rule = r̂ then
10: insert-ambs(G, sen, d, D, 〈r̂,âlt,̂i〉, (syms, ambs))
11: else
12: if d > D then
13: if rule.finite_depth 6= none then
14: alt← rule.finite_depth
15: else
16: altfd ←calc-alt-finite-depth(G, rule)
17: if altfd 6= none then
18: rule.finite_depth ← altfd
19: alt ← alt fd
20: else
21: alt← rand(rule.alts)

22: end if
23: end if
24: else
25: alt← rand(rule.alts)

26: end if
27: for sym in alt do
28: if sym ∈ N then . If sym is a non-terminal
29: generate(G, R(sym), sen, d, D, 〈r̂,âlt,̂i〉, (syms, ambs))
30: else
31: append(sen, sym)
32: end if
33: end for
34: end if
35: d← d− 1

36: end function

APPENDIX D. VERIFYING MINIMISER1 154

37: function insert-ambs(G, sen, d, D, 〈r̂,âlt,̂i〉, (syms, ambs))
38: j ← 0

39: while j < len(âlt) do
40: if (j < i) or (j ≥ (i+ len(syms))) then
41: sym← âlt[j]
42: if sym ∈ N then
43: generate(G, R(sym), sen, d, D, 〈r̂,âlt,̂i〉, (syms, ambs))
44: else
45: append(sen, sym)

46: end if
47: j ← j + 1

48: else
49: append(sen, ambs)
50: j ← j + len(syms)
51: end if
52: end while
53: end function

Bibliography

[1] GNU Bison: The YACC-compatible parser generator. https://www.gnu.org/
software/bison, 1988–2015.

[2] ANTLR grammars. https://github.com/antlr/grammars-v4, 2012–2015.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. .H. Wegstein, A. van Wijngaarden,
, and M. Woodger. Report on the algorithmic language ALGOL 60. Journal of the
ACM, 3(5):299–314, 1960.

[4] H. J. S. Basten. Ambiguity detection methods for context-free grammars. Master’s
thesis, Universiteit van Amsterdam, Aug 2007.

[5] H. J. S. Basten. Grammar collection containing altered programming languages.
http://sites.google.com/site/basbasten/files/grammars.zip, 2010.

[6] H. J. S. Basten and T. van der Storm. AMBIDEXTER: Practical ambiguity detec-
tion. In Proc. SCAM 2010, pages 101–102, 2010.

[7] H. J. S. Basten and J. J. Vinju. Faster ambiguity detection by grammar filtering. In
Proc. LDTA, pages 5:1–5:9, 2010.

[8] H. J. S. Basten and J. J. Vinju. Parse forest diagnostics with dr. ambiguity. In
Proceedings of the 4th International Conference on Software Language Engineering,
pages 283–302. Springer-Verlag, 2012.

[9] E. Bendersky. Weighted random generation in python, 01 2010. http://eli.
thegreenplace.net/2010/01/22/weighted-random-generation-in-python.

[10] C. Brabrand, R. Giegerich, and A. Møller. Analyzing ambiguity of context-free
grammars. Science of Computer Programming, 75(3):176–191, Mar 2010.

[11] B. Canou and A. Darrasse. Fast and sound random generation for automated testing
and benchmarking in objective caml. In Proc. Workshop on ML, pages 61–70, 2009.

[12] D. G. Cantor. On the ambiguity problem of backus systems. Journal of the ACM,
9(4):477–479, 1962.

155

https://www.gnu.org/software/bison
https://www.gnu.org/software/bison
https://github.com/antlr/grammars-v4
http://sites.google.com/site/basbasten/files/grammars.zip
http://eli.thegreenplace.net/2010/01/22/weighted-random-generation-in-python
http://eli.thegreenplace.net/2010/01/22/weighted-random-generation-in-python

BIBLIOGRAPHY 156

[13] X. Chen. Hyacc parser generator. http://hyacc.sourceforge.net, 2008–2015.

[14] B. S. N. Cheung and R. C. Uzgalis. Ambiguity in context-free grammars. In
Proc. SAC, pages 272–276. ACM, 1995.

[15] N. Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137–167, June 1959.

[16] L. Diekmann and L. Tratt. Eco: A language composition editor. In Software Language
Engineering (SLE), pages 82–101. Springer, Sep 2014.

[17] J. Earley. An efficient context-free parsing algorithm. Journal of the ACM, 13(2):94–
102, 1970.

[18] S. Gorn. Detection of generative ambiguities in context-free mechanical languages.
Journal of the ACM, 10(2):196–208, 1963.

[19] D. Grune and C. J. H. Jacobs. Parsing Techniques: A Practical Guide. Ellis Horwood
series in computers and their applications. Ellis Horwood, New York, 1990.

[20] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering:
Techniques, taxonomy, tutorial. ACM Comput. Surv., 45(1):11:1–11:61, Dec 2012.

[21] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv., 45(1):11:1–11:61, Dec
2012.

[22] M. D. Hutton. Noncanonical extensions of LR parsing methods. 1990.

[23] K. Ulik II and R. Cohen. LR-regular grammars-an extension of LR(k) grammars.
Journal of Computer and System Sciences, 7(1):66–96, 1973.

[24] S. C. Johnson. Yacc: Yet another compiler-compiler. Technical report, AT&T Bell
Laboratories, 1979.

[25] A. F. Kaupe. A note on the dangling else algol 60. Commun. ACM, 6(8):460–, Aug
1963.

[26] D. Knuth. On the translation of languages from left to right. Information and
Control, 8(6):607–639, 1965.

[27] R. Lämmel. Grammar testing. 2029:201–216, 04 2001.

[28] B. Jones M. Harman. Search based software engineering. Journal of Information
and Software Technology, 43(14):833–839, 2001.

[29] V. Makarov. MSTA (syntax description translator). http://cocom.sourceforge.
net/msta.html, 1999.

http://hyacc.sourceforge.net
http://cocom.sourceforge.net/msta.html
http://cocom.sourceforge.net/msta.html

BIBLIOGRAPHY 157

[30] M. Mehryar and M. Nederhof. Regular Approximation of Context-Free Grammars
through Transformation. Springer Netherlands, 2001.

[31] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria. Uniform random generation of
huge metamodel instances. In ECMDA-FA, pages 130–145, 2009.

[32] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Soft-
ware: Practice and Experience, 25(7):789–810, 1995.

[33] P. Purdom. A sentence generator for testing parsers. 12:366–375, 09 1972.

[34] S. Schmitz. Conservative ambiguity detection in context-free grammars. In In-
ternational Colloquium on Automata, Languages and Programming (ICALP), pages
692–703. Springer, July 2007.

[35] F. W. Schröer. ACCENT, a compiler compiler for the entire class of context-free
grammars. Technical report, 2000. http://accent.compilertools.net/Accent.
html.

[36] F. W. Schröer. AMBER, an ambiguity checker for context-free grammars. Technical
report, 2001. http://accent.compilertools.net/Amber.html.

[37] E. Scott and A. Johnstone. GLL parsing. In Proc. LDTA, volume 253, pages 177–189,
2010.

[38] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, 1985.

[39] N. Vasudevan and L. Tratt. Search-based ambiguity detection in context-free gram-
mars. In Proc. ICCSW, pages 142–148, Sep 2012.

[40] N. Vasudevan and L. Tratt. Detecting ambiguity in programming language gram-
mars. In Proc. SLE, Oct 2013.

http://accent.compilertools.net/Accent.html
http://accent.compilertools.net/Accent.html
http://accent.compilertools.net/Amber.html

	Introduction
	Parsing
	Goal and Motivation
	The SinBAD Solution
	Overall Thesis Structure
	Contributions
	Detailed Synopsis
	List of Publications

	An Overview of Ambiguity Detection
	Grammars and Languages
	Formal Definition
	Chomsky Hierarchy of Grammars and Languages

	CFGs
	Generating Sentences from a Grammar
	Recursion
	Parse Tree
	Parsing Grammars
	Top-down Parsers
	Bottom-up Parsers
	Bottom-up Parsing – an Example

	Ambiguity
	Ambiguity in a PL Grammar

	Ambiguity Detection
	LR(k) and LRR
	LR(1) Parse Table – an Example
	Ambiguity Checking with LR(k)

	Exhaustive
	Gorn
	Gorn's Method – an Example

	Cheung and Uzgalis
	CandU Method – an Example

	AMBER
	Earley Parsing
	Earley Recogniser as Sentence Generator
	Ambiguity Characterisation
	AMBER Options
	AMBER Method – an Example

	Approximation
	ACLA
	ACLA Method – an Example

	Noncanonical Unambiguity

	AmbiDexter

	Summary

	Search-Based Ambiguity Detection
	Depth-based Approach
	Why Depth-based Approaches Sometimes Fail?
	Breadth-based Approach

	Search-based Techniques
	SinBAD
	Definitions
	Search-based Backends
	Purerandom
	Non-termination in purerandom– an Example

	Heuristic Based Backends
	The dynamic1 Backend
	Non-termination in dynamic1 – an Example

	The dynamic2 Backend
	Non-termination in dynamic2 – an Example
	Summary

	The dynamic2rws Backend
	Non-termination in dynamic2rws– an Example
	Summary

	The dynamic3 Backend
	Non-termination in dynamic3– an Example

	The dynamic4 Backend

	Summary

	Grammar Generation
	Boltzmann Sampled Grammars
	Specification Generator
	Class Specification
	Boltzmann Sampler
	Filtering

	Mutated Grammars
	Summary

	Dimensioning Experiments
	Experimental Suite
	Grammar Collection
	Hardware
	Tools and Options
	Search-based Techniques
	Choice of Representation
	Fitness Function
	Move Operator

	Formulating Tool Options as a Search Problem
	Solution Representation
	Fitness Function
	Move Operator
	Local Maximum

	Choosing a Search-based Technique
	Hill Climbing

	Implementation of Hill Climbing
	Definitions
	Hill Climbing - Single Option
	Neighbour Selection
	Local Maxima
	Hill Climbing – AMBER
	Hill Climbing – AmbiDexter
	Hill Climbing – Dynamic Backends
	Hill Climbing – The dynamic2rws Backend

	Crude Dimensioning
	Grammar Corpus and Time Limit
	Hill Climbing – Run-time Values
	Invoking Hill Climbing Functions
	Additional Tool Runs
	Crude Dimensioning Results
	Boltzmann Grammars
	Mutated Grammars

	Crude Dimensioning – Summary
	Fine Dimensioning
	Grammar Corpus and Time Limit
	Results
	Boltzmann Grammars
	Mutated Grammars

	Best Performing Tool Options
	AMBER
	AmbiDexter
	SinBAD's backends

	Summary

	Main Experiment
	Experiment Methodology
	Results
	Tool Independent Analysis
	Tool Overview
	ACLA
	AmbiDexter
	Filtering Performance
	Length of Ambiguous Fragments

	AMBER
	SinBAD's Backends
	Depth. vs. Breadth – a Comparison
	Ambiguities that SinBAD Backends Didn't Find

	Validation Experiment
	Validating the Hypotheses
	Threats to Validity
	Summary

	Minimising Grammar Ambiguity
	Definitions
	The minimiser1 Minimiser
	Sanity Checking minimiser1's Grammar Minimisation

	Minimisation using minimiser1– an Example
	Evaluating minimiser1– Minimiser Experiment
	Run-Time Values
	Minimiser Experiment – Results
	Grammar Size
	Sentence Length
	Ambiguous Fragment Length
	Longer Sentences and Ambiguous Fragments

	Summary

	Conclusions
	Conclusions
	Future Work

	Appendices
	Non-termination in dynamic2 – Boltzmann Grammar
	Crude Dimensioning – Altered PL Grammars
	Fine Dimensioning – Altered PL Grammars
	Verifying minimiser1

