
Comparative Study of DSL Tools

Naveneetha Vasudevan1

Bournemouth University
Poole, Dorset, BH12 5BB, United Kingdom

Laurence Tratt2

Middlesex University
The Burroughs, Hendon, London, NW4 4BT, United Kingdom

Abstract

An increasingly wide range of tools based on different approaches are being used to implement
Domain Specific Languages (DSLs), yet there is little agreement as to which approach is, or ap-
proaches are, the most appropriate for any given problem. We believe this can in large part be
explained by the lack of understanding within the DSL community. In this paper we aim to increase
the understanding of the relative strengths and weaknesses of four approaches by implementing a
common DSL case study. In addition, we present a comparative study of the four approaches.

Keywords: Domain Specific Languages, Parsing, Program Transformation.

1 Introduction

Domain Specific Languages (DSLs) are mini-languages tailored for a specific
domain, which can offer significant advantages over General Purpose Lan-
guages (GPLs) such as Java [5]. When developing software systems in a GPL,
one often comes across situations where a problem is not naturally express-
ible in the chosen GPL. Traditionally one then resorts to finding a suitable
workround (within the framework provided by the GPL) to encode the solu-
tion. One of the drawbacks of using such a workaround is that the program
can become complex, thus making it far less comprehensible than the devel-
oper had wished for. The lack of expressivity in a GPL can be overcome by

1
e-mail: naveneetha@yahoo.com

2
e-mail: laurie@tratt.net

mailto:naveneetha@yahoo.com
mailto:laurie@tratt.net

Vasudevan and Tratt

using DSLs. DSLs allow programs to be implemented at the level of abstrac-
tion of the application domain which enables quick and effective development
of software systems. Given a domain and the need for a DSL, there exist
a number of tools and approaches to implement DSLs. The traditional ap-
proach involves implementing DSLs as ‘stand-alone’ systems using compiler
tools such as Lex and YACC, or ANTLR [1]. Such an approach provides the
DSL author with complete control over the DSL, from its syntax to its style of
execution, but leads to high development costs as each implementation tends
to be engineered from scratch [5].

In contrast to the traditional technique, an embedding approach – where
DSLs are implemented by embedding them within a host GPL – can also be
used. An embedding approach allows the DSL to inherit the infrastructure
of the host language, and thus facilitating the reuse of the software artifacts
(such as syntax, semantics etc.) leading to reduced software development cost.

Embedding approaches can be either homogeneous or heterogeneous [13]:
in heterogeneous embedding, the system used to compile the host language,
and the system used to implement the embedding are different; whereas in
a homogeneous system, the systems are the same, and all components are
specifically designed to work with each other. This distinction is important
as it allows one to understand the limitations of a given approach. Examples
of heterogeneous embedding approaches are: Stratego/XT [2], which supports
the implementation of DSLs through program transformation; and Silver [14]
which supports the implementation of DSLs through the use of language ex-
tensions, where new language constructs (for domain specific features) are
translated to semantically equivalent constructs in the host language through
transformation. Among homogeneous embedding approaches: Lisp and Ne-
merle [12] support the development of embedded languages through the use
of macros; in a pure embedding approach – where no macro-expanders or
generators are used – DSLs are implemented using host language features
such as higher-order functions and polymorphism [9]; compile-time meta-
programming has been used to implement DSLs [4,8], by allowing the user
of a programming language to interact with the compiler to construct arbi-
trary program fragments at compile-time.

More recently, a new class of tools language workbenches has emerged,
which provide a rich environment for building DSLs. The Meta Programming
System (MPS) [6] and the Intentional Domain Workbench (IDW) [16] are two
workbenches that typify this new class of tools. The workbenches essentially
provide an Integrated Development Environment (IDE) with underlying base
languages. For instance, IDW comes with CL1 language; and MPS comes
with three base languages: structure for defining the abstract syntax of a
language; editor for defining the concrete syntax of a language; and seman-

tics for defining the semantics of a language. Using these language building

2

Vasudevan and Tratt

tools, DSLs can be developed and integrated to implement a domain specific
application.

In this paper we evaluate four approaches to DSL implementation. In
similar style to Czarnecki et al. [4], which evaluates the compile-time meta-
programming abilities of three languages, we use a case study to evaluate
these approaches. Our case study is a small but realistic DSL example of a
state machine language. Although our work involves a single case study, the
DSL implemented for our case study is indicative of a much wider range of
DSLs which have been implemented thus far. The four approaches we have
chosen to study represent important, differing, points on the DSL implementa-
tion spectrum: ANTLR represents a traditional stand-alone approach to DSL
implementation; Ruby typifies a weakened form of Hudak’s vision of domain
specific embedded languages; Stratego/XT can embed any language inside any
other; and Converge uses compile-time meta-programming to implement cus-
tomisable syntax. The code for each of our examples can be downloaded from
http://navkrish.net/downloads/dsl tools src.tar.gz. To the best of
our knowledge, this is the first time that a stand-alone approach and three
‘modern’ approaches to DSL implementation have been evaluated together and
we hope this comparative study will benefit future users and implementers of
DSLs and DSL tools.

The structure of the rest of this paper is as follows. Section 2 introduces
the case study, which then provides the basis for our DSL implementation in
ANTLR, Ruby, Stratego and Converge in sections 4, 5, 6 and 7 respectively.
Section 8 presents a comparative analysis of the four DSL tools and their
approaches based on selected dimensions and metrics. Section 9 then presents
our experiences of the relative strengths and weaknesses of the four DSL tools.

2 Case Study: Finite State Machine

The case study used in this paper is a state machine (Figure 1) of a turnstile
machine with states and transitions. The syntax for a ‘transition’ is repre-
sented using the UML notation event[guard]/action, where event repre-
sents an event that triggers the transition, guard represents the condition that
must evaluate to true for the transition to occur and action represents the
subsequent action. We implement this case study in different approaches, in
each creating an executable state machine that we can fire events at and ex-
amine its behaviour. For each approach, we define a state machine language
(in a syntax appropriate to that approach), and then implement the state
machine language for the turnstile machine.

3

Vasudevan and Tratt

Violation

coin [credit + 1 < 3] / credit = credit + 1

doorOpen/alarm = true

reset/alarm = false,credit = 0

coin [credit + 1 == 3] / credit = 0 doorClose

Unlocked

Locked
alarm = 0
credit = 0

Fig. 1. State machine for a Turnstile

3 Dimenstions and Metrics

In order to evaluate the four implementations of our case study, we use a set of
dimensions and metrics. For the purposes of this paper, a ‘dimension’ refers to
a property of a DSL implementation that can not be measured quantitatively
whereas a ‘metric’ refers to a property that can (and therefore numerical
data can be extracted from the DSL implementation). We use and extend
the dimensions (Table 1) identified by Czarnecki et al. [4] to present our
comparative analysis. We then identify and define two metrics (Table 2) with
which we extend our analysis.

Dimension Description

Approach What is the primary approach supported by the DSL tool?

Guarantees What guarantees are provided by the DSL tool in terms of syntactic and
semantic well-formedness of the transformed-to constructs?

Reuse Can the ‘user-defined’ aspects of the DSL implementation be reused?

Context-sensitive
transformation

Can the DSL tool perform context-sensitive transformation?

Error reporting Can the DSL tool report errors in terms of the DSL source (line number
and column offset)?

Table 1
List of dimensions

Metric Description

Lines of code For a given case study, how many lines of code are required to represent
the domain-specific information?

Aspects to learn For a given case study, how many aspects need to be learned to implement
a DSL?

Table 2
List of metrics

4 Implementation of a DSL in ANTLR

ANTLR [11] is a parser generator tool that provides a framework for im-
plementing language translators. In ANTLR, the generated parser can be
implemented as a translator in one of two forms: it can execute the semantic

4

Vasudevan and Tratt

Input
Program
 (DSL)

Output
Program
(Java)

Template
(Java)

TextText
Template
 calls

Parse
(FSMParser)

Code generation
(StringTemplate)

Fig. 2. The two stages required to implement DSLs in ANTLR

actions; or it can execute the semantic actions to generate a target program
using templates. For the purposes of this paper, we discuss ANTLR as a
translator that emits a target program.

We have chosen to implement DSLs in ANTLR through translation (Fig-
ure 2) using templates. The translation process has two stages: the parsing
stage where the input program is parsed and the parsed data is fed as argu-
ments to template calls; and the code generation stage where these template
calls are then mapped to the target language concepts. For the parsing stage,
ANTLR provides the necessary libraries to generate the lexer and the parser
program for a given grammar. To generate the target program, ANTLR sup-
ports the use of StringTemplate—a template engine library for generating text
using templates. A template is essentially a text document with template rules
where each rule contains ‘placeholders’ (expressions delimited by < > or $ $)
that tell the template engine where to put the data. Although ANTLR sup-
ports code generation for only a handful of GPLs, there is an open source
community for developing code generation libraries for new target languages.
For our case study we translate code fragments from our DSL to Java (target
language). We explain the two stage translation process using the ‘transition’
construct (from our DSL program) as an example. A code fragment showing
the domain specific information for a transition (from our case study) is as
follows:

transition unlocking from locked to unlocked : coin [credit + 1 == 3] / credit := 0

The corresponding parser rules (transition and ttail) for the above ‘tran-
sition’ construct are shown below:

transition

scope {

String name;

...

String event;

List actions;

boolean isguard;

}

: ’transition’ tname=ID {$transition::name=$tname.text;}

...

’:’ tevent=ID {$transition::event=$tevent.text;}

ttail {$prog::guards.add($ttail.st);} NEWLINE

-> transition(tname={new StringTemplate($tname.text)},

...

event={new StringTemplate($tevent.text)})

5

Vasudevan and Tratt

;

ttail

@init {

$transition::actions = new ArrayList();

$transition::isguard = false;

}

: g=guard? actionstats?

-> {$transition::isguard}?

guardBlock(guardcond={$g.st},

t_name={$transition::name},

...

t_event={$transition::event},

actions={$transition::actions})

-> guardBlock(guardcond={new StringTemplate("true")},

t_name={$transition::name},

...

t_event={$transition::event},

actions={$transition::actions})

;

Each element (on the RHS) of a parser rule (transition and ttail in
the above code) can be followed by an action. An action is a block of
source code written in the target language (and enclosed in curly braces)
that is used to generate output or construct trees, or modify a symbol ta-
ble. An action is executed immediately after the preceeding element has
been matched. For instance, in the above transition parser rule, when
the element ID (tname=ID construct) is matched, it results in the action
– $transition::name=$tname.text; – to be executed. This action ini-
tialises the attribute name defined in the scope block of the transtition
rule. In ANTLR, there are essentially two type of scopes: a named global
scope defined outside any rule; and a rule scope (unnamed) defined within
a rule. A global scope is named and therefore any rule can access it
by its name whereas a rule scope is accessible only to the current rule
and to all the rules invoked by it. Scopes provides a mechanism to ex-
change data between parser rules. For instance, the attribute name that was
initialised when processing the action ($transition::name=$tname.text;)
from the transition rule can now be accessed within the ttail

(guardBlock(guardcond=$g.st,t name=$transition::name,...)) rule for
generating target language constructs.

In ANTLR, to generate a target language construct, a parser rule needs
to be mapped to a template rule. Then, given a template containing the def-
inition of the template rule, the parser (at run-time) will invoke the template
engine to generate the necessary constructs in the target language. For the
above transition and ttail rules, template rules – transition(...) and
guardBlock(...) – will be invoked. The template rules (transition(...)
and guardBlock(...)) defining the constructs in the target language (Java)
are shown below:

transition(tname,from,to,event) ::=

"this.transitions.add(new Transition(\"<tname>\",...,\"<event>\"));"

6

Vasudevan and Tratt

guardBlock(guardcond,t_name,t_from,t_to,t_event,actions) ::= <<

if (transition_name.equals("<t_name>") &&

...

transition_event.equals("<t_event>")) {

if ((<guardcond>) && ...) {

//actions here

<actions; separator="\n">

_guard = true;

}

}

>>

5 Implementation of a DSL in Ruby

Ruby is a dynamically-typed, general purpose object-oriented language [7]. In
Ruby, DSLs are implemented using a combination of features such as lambda
abstractions (code blocks), evaluations, dynamic typing, reflection and flexible
syntax. We explain how these features combine to implement the ‘transition’
construct from our DSL program as an example. In Ruby, a code block is a
closure that can be used to encode domain specific information. A code block
is expressed either on a single line using delimiting curly braces ({|x| print

x }) or over multiple lines using do and end keywords. A code block encoding
the domain specific information for a transition is as follows:

transition "charging" do |t|

t.from_state ’locked’

t.to_state = ’locked’

t.guard do |credit|

if (credit + 1) < 3

true

end

end

...

end

In the above code, the transition construct that initially looks like a DSL
keyword describing a transition is essentially an invocation of the method –
transition – followed by two arguments: a string, and a code block that ac-
cepts a parameter (|t|). In Ruby, invoking a method requires a context in the
form of an instance of an object or a class. For our example where we want to
execute the transition method, the context is provided by an instance (@fsm
= Fsm.new) of the state machine class (Fsm). To execute the transition

method for the fsm instance, Ruby’s evaluation method instance eval can be
used. The instance eval method allows a string or a code block to be evaluated
in the context of an instance of a class. Therefore, for our case study, where
the transition constructs are contained within a text file, we can read the
file as a string and then evaluate the constructs for the fsm instance. A code
fragment showing the definition of the load method that evaluates the DSL
program using the instance eval method and the definition of the transition
method is as follows:

7

Vasudevan and Tratt

class Fsm

takes file (DSL program) as an argument

def load(fsm_dsl)

instance_eval(File.read(fsm_dsl),fsm_dsl)

...

end

def transition(name, &aBlock)

transition = Transition_class.new(name)

transition.load_block(&aBlock)

...

end

...

end

In Ruby, methods accept a code block as a final argument. However, if a
method is defined with a block argument (an ampersand-prefixed final argu-
ment of the form &aBlock), then a code block (supplied as an argument to the
method) will be implicitly converted to a Proc object. A Proc object is es-
sentially a Ruby object representing a block of code which can then be passed
around as an object and executed either by using yield or by invoking its
call method (any arguments passed to the call method will be assigned to
the block parameters). In the above code, since the transition method de-
fines a block argument (&aBlock), the Proc object associated with it is passed
as an argument to the load block method of the transition object. The
following code fragment shows how the &aBlock object is eventually executed
by calling yield self (self refers to transition object from the above code
fragment):

class Transition_class

def from_state(from_state)

@from_state = from_state

end

def to_state=(to_state)

@to_state = to_state

end

def guard(&guardBlock)

@guard_block = guardBlock

end

def load_block

yield self

end

...

end

The above code also shows the corresponding method definitions
(from state(from state) and to state=(to state)) for the transition at-
tributes (t.from state ’locked’ and t.to state = ’locked’). The two
variant style of invoking (and defining) methods – with and without the equal
sign – is indicative of an important aspect of Ruby as a DSL tool: syntactic
flexibility. In addition to code blocks, Ruby supports dynamic typing, which
allows the runtime system to implement features such as dynamic dispatch

8

Vasudevan and Tratt

Input
Program
 (DSL)

Output
Program
(Java)

Parse table
(DSL)

Parse table
(Stratego + DSL + Java)

TextText ATerm ATerm Pretty-print
 (pp-java)

Transform
(fsm-transform)

Parse
(sglri)

Fig. 3. The transformation pipeline in Stratego showing the various stages to implement DSLs

and duck typing. For instance, the Object class enables dynamic dispatch
in every object by defining two methods: responds to? checks if an object
will respond to a message; and method missing catches messages an object
has no explicit handler for. In a similar vein to Smalltalk, Ruby supports the
creation (or replacement) of methods at run-time that can then be used to
dynamically manipulate the behaviour of an object.

6 Implementation of a DSL in Stratego/XT

Stratego/XT [2] is a software transformation framework that consists of the
Stratego language (for implementing program transformations through term
rewriting) and the XT toolset (for providing the infrastructure to implement
these transformations). Stratego/XT achieves program transformation by rep-
resenting programs in the form of abstract syntax trees, called Annotated
Terms (ATerms); and then exhaustively applying a set of strategies and term
rewrite rules to them.

In Stratego/XT, DSLs are implemented using a transformation pipeline
(Figure 3) consisting of three stages: a parsing stage that implements the
parser for the DSL; a transformation stage that implements the transformation
program using the Stratego language; and a pretty printing stage that unparses
the final ATerm to the target program. For the parsing and the pretty-printing
stages, tools (sglri and pp-java respectively) from the XT toolset can be used.
For the purposes of this paper, we focus our attention on the crucial stage of
the transformation pipeline—the transformation program.

A transformation program is implemented using a set of term-rewrite rules
and strategies. A term-rewrite rule defines a transformation on an ATerm and
is of the form L : p1 -> p2, where L is the rule name, and p1 and p2 are term
patterns. A strategy is a program that supports the application of rules to an
ATerm by defining the order in which the terms are re-written. For instance, to
apply rules R1 and R2 sequentially for a single top-to-bottom traversal on an
AST, a topdown strategy – denoted by topdown(R1 <+ R2) – can be used. To
apply these rules repeatedly for a single top-to-bottom traversal, the topdown
strategy can apply the repeat strategy – denoted by topdown(repeat(R1

<+ R2)) – which can then invoke the rules (R1 and R2) until no more rule
applies. Further, built-in strategies can be combined to define a user-defined

9

Vasudevan and Tratt

strategy; for the above example, a user-defined strategy ‘simple’ can be defined
as simple = topdown(repeat(R1 <+ R2)). The ability to define strategies
is useful in two ways: first, it enables the reuse of rules and strategies; and
second, it enables abstraction by masking the low-level actions on an AST.

In stratego, a term-rewrite rule can be written either by using nested
ATerms or by using the concrete syntax of the object language [15]. For
instance, the assignment of an expression to a variable can be expressed using
nested ATerms (Assign(Var(x),Expr(e))) or using the concrete syntax of
the object language (|[x := e]|). To use concrete syntax within term-
rewrite rules, the Stratego meta-language has to be extended with the gram-
mar definition of the object language. For our case study, where we want to
transform code fragments from DSL to Java, this involves merging the gram-
mar definitions of Stratego (provided by Stratego compiler), Java (provided
by Java-front [15]), and our DSL. Further, the grammar definition of an ob-
ject language can be extended with meta-variables (patterns corresponding to
the syntactic elements such as identifiers, expressions and lists of the object
language) which can then be used as variables to splice in meta-level expres-
sions within the object language constructs in a transformation rule. For the
‘transition’ construct where we want to create meta-level expression for the
TransitionTail and Guard elements, meta-variables (ttail and guard) are
defined as part of the grammar definition. A condensed version of the grammar
definition, showing the definition for the TransitionTail and Guard elements
and their corrsponding definition of the meta-variables (ttail and guard) is
as follows:

context-free syntax

...

"transition" Id "from" Id "to" Id ":" Id TransitionTail -> Transition {cons("Transition")}

TransitionTailG | TransitionTailGA | TransitionTailA -> TransitionTail {cons("TransitionTail")}

Guard -> TransitionTailG {cons("TransitionTailG")}

"[" Exp "]" -> Guard {cons("Guard")}

variables

"ttail" [0-9] -> TransitionTail {prefer}

"guard" [0-9] -> Guard {prefer}

...

The above definition of the variables allow us to replace the DSL constructs
corresponding to the TransitionTail and Guard elements in a transformation
rule with meta-variables. The following code fragment shows the ‘transition’
construct (from our DSL program) and a subset of the transformation rules
with embedded meta-variables (ttail1 and guard1):

transition unlocking from locked to unlocked : coin [credit + 1 == 3] / credit := 0

guard-init : |[transition x_t from x_a to x_b : x_e ttail1]| ->

|[if ((transitionName.equals("~x_t") && ...) { bstm_1 }]|

where <trans-tail> ttail1 => bstm_1

trans-tail : trans-tail |[guard1]| ->

|[if (e_1) { _guard = true; return _guard; }]|

where <guard> guard1 => e_1

10

Vasudevan and Tratt

trans-tail : trans-tail |[action1]| ->

|[if (true) { bstm_1* _guard = true; return _guard; }]|

where <action> action1 => bstm_1*

...

The use of a where clause in a transformation rule enables the programmable
application of rules. For instance, the <trans-tail> ttail1 construct within
the where clause of the guard-init rule, will invoke either of the trans-tail
rule, depending upon the value of ttail1 at run-time. The value returned
from invoking the trans-tail rule on the ttail1 ATerm is assigned to the
bstm 1 meta-variable which is then spliced back into the transformation rule
to generate the target language construct (the grammar definition of the Java
language defines bstm 1 as a meta-variable).

7 Implementation of a DSL in Converge

Converge [13] is a dynamically typed imperative programming language,
with compile-time meta-programming (CTMP) and syntax extension facili-
ties. Converge, a syntax-rich modern language, unifies concepts from lan-
guages such as Python (indentation and datatypes) and Template Haskell
(CTMP).

DSLs are implemented in Converge using its CTMP facility. CTMP can be
thought of as being equivalent to macros, as it provides the user with a mech-
anism to interact with the compiler, allowing the construction of arbitrary
program fragments by user code. Converge achieves this construction of arbi-
trary program fragments using its compile-time meta-programming features—
splicing, quasi-quotation, and insertion [13]. Splice annotations $<...> eval-
uate the expression between the angled brackets, and replace the splice anno-
tation itself with the result (AST) of its evaluation. For instance, the splice
annotation $<x> tells the compiler to evaluate ‘x’ at compile-time and replace
it with the result (AST) of that evaluation. Quasi-quotes [|...|] allows the
user to build ASTs that represent the expression inside it. For instance, while
the Converge expression 2 + 3 evaluates to 5, the quasi-quoted expression
[| 2 + 3 |] evaluates to an AST of the form add(int(2),int(3)). Inser-
tions ${...} are splice annotations placed within quasi-quotes. Splices within
quasi-quotes are evaluated differently to splices outside quasi-quotes. They are
not evaluated at compile-time but copied as-is into the code that the quasi-
quote transforms to. For instance, the quasi-quoted expression [| $<x> + 2

|] would result in an AST along the lines of add(x,int(2)), where x must
evaluate to a valid AST.

Converge allows any arbitrary DSL to be embedded within normal source
files via a DSL block. A DSL block is introduced within a converge source file
using a variant of the splice syntax $<<expr >> where expr must evaluate to a
DSL implementation function. This function is then called at compile-time to

11

Vasudevan and Tratt

translate the DSL block into a Converge AST, using the same mechanism as a
normal splice. DSL blocks make use of Converge’s indentation based syntax;
when the level of indentation falls, the DSL block is finished. A DSL block
and its corresponding DSL implementation function for our case study are as
follows:

TurnstileFSM := $<<FSM_Translator::mk_itree>>:

...

state locked

transition unlocking from locked to unlocked : coin [credit + 1 == 3] / credit := 0

func mk_itree(dsl_block, src_infos):

parse_tree := parse(dsl_block, src_infos)

return SM_Translator.new().generate(parse_tree)

The DSL implementation function FSM Translator::mk itree is called at
compile-time with a string representing the DSL block along with the src

infos obtained from the Converge tokenizer (Src infos are covered later in Sec-
tion 8). Using the Converge Parser Kit (CPK) this string is parsed to produce
a parse tree. This parse tree containing tokens and their associated src infos,
is traversed and translated to an AST using quasi-quotes and insertion. The
CPK provides a simple framework – a generic parse tree Traverser class – to
perform this translation: for each node n in the parse tree that requires trans-
lation, a corresponding translation function t n should be defined. Given a
node in the parse tree, the self. preorder method can then be used to call
the appropriate t function. For our case study we implement SM Translator

class (inherits Traverser::Traverser class) that contains the necessary t

functions (t system, t transition etc.). The generate function initiates
the translation process by invoking t system function (system is the top-
level rule for our grammar). A code fragment showing the definition of the
SM Translator class and the use of self. preorder method to invoke the
necessary t function depending upon the value of the node is as follows:

class SM_Translator(Traverser::Traverser):

func generate(self, node):

return self._preorder(node)

func _t_system(self, node):

sts := [] // States

tns := [] // Transitions

...

while i < node.len():

ndif node[i][0].name == "state":

sts.append(self._preorder(node[i])) // invokes _t_state function

elif node[i][0].name == "transition":

tns.append(self._preorder(node[i])) // invokes _t_transition function

...

return [|

class:

states := ${CEI::ilist(sts)}

transitions := ${CEI::ilist(tns)}

12

Vasudevan and Tratt

...

func event(self, e):

...

|]

func _t_transition(self, node):

// transition ::= "TRANSITION" "ID" "FROM" "ID" "TO" "ID" transition_tail

tail_node := node[6]

if tail_node.len() != 0:

// transition_tail ::= ":" event guard action

event := self._preorder(tail_node[1])

guard := self._preorder(tail_node[2])

...

else

...

The generate function from the above code fragment returns an anonymous
class that is essentially a representation of the DSL program. Converge pro-
vides Compiler External Interface (CEI) package to interface with the com-
piler. The CEI package provides a range of functions to create an AST without
using Quasi-quotes for code fragments which can’t be expressed using concrete
syntax (e.g. an if statement with an arbitrary number of elifs). In the above
code fragment the construct – CEI::ilist(tns) – essentially returns an AST
containing a list of transition objects. The anonymous class returned from the
generate function can then be instantiated to produce a running state ma-
chine turnstile := TurnstileFSM.new(), which can receive and act upon
events (turnstile.event("coin")).

8 Analysis and Comparison

8.1 Dimensions

In this section, we present our comparative analysis of the four DSL tools
based on the dimensions listed in Table 1. Table 3 compares the DSL tools,
based on which we present our analysis. We also provide our views from an end
user perspective on how the DSL tools compare for each of these dimensions.
For the purposes of this paper an end user refer to a developer implementing
the DSL translation program.

Approach In ANTLR, DSLs are implemented through translation using a
template engine, where the source program (DSL) is parsed, and the data
is fed to the template engine to generate the target program. In Ruby, DSLs
are implemented using a combination of its host language features such as
lambda abstractions, dynamic typing, and reflection. In Stratego/XT, DSLs
are implemented through term-rewriting, where a source program (DSL) is
transformed to a target program (e.g. Java) using a set of transformation
rules and strategies. The term-rewriting is performed by the transformation
program (fsm-transform in Figure 3) at the preprocessor stage—a stage

13

Vasudevan and Tratt

Dimension ANTLR Ruby Stratego/XT Converge

Approach Translation Lambda ab-
stractions

Term rewriting Compile-
time meta-
programming

Guarantees No Syntax valid
(runtime)

No Well-typed
(compile-time)

Reuse Limited Limited Limited Limited

Context-
sensitive trans-
formation

Yes No Yes Limited

Error reporting Limited (end
language)

Yes (run-time) Limited (end
language)

Yes (compile-
time)

Table 3
A comparative analysis of ANTLR, Ruby, Stratego,and Converge

prior to the compilation of the target language program. In Converge,
DSLs are implemented using its compile-time meta-programming facility,
where the DSL constructs are translated to the host language constructs at
compile-time.
Based on the experience in implementing our case study, we believe each

of these approaches have their strengths and weaknesses. Among embed-
ding approaches: although pure embedding approach (e.g. Ruby) provide
a much quicker way of implementing DSLs, the syntax of the DSL will
be limited by the syntax of the host language; heterogeneous approach
(e.g. Stratego) supports code generation to any target language but the end
user might face a much steeper learning curve; and finally a homogeneous
approach (e.g. Converge) provides a middle ground in that it requires much
less learning but DSLs can only be translated to the host language.

Guarantees In the context of this paper, the guarantees that an approach
can provide relate to syntactic or semantic well-formedness. Although there
are potentially many different semantic guarantees that could be offered, we
consider only the following two (since the errors related to them were the
more prominent ones for our case study): that the transformed-to pro-
gram does not have references to any undefined variables; and that the
transformed-to program does not have any type errors.
In ANTLR, the parsed data is fed to the template engine which then gen-

erates the target program for a given template. There are few guarantees
that can be given with respect to syntactic and semantic well-formedness of
the generated program: first, the template engine is unaware of the type of
data that is being pushed from the parse; second, the well-formedness of the
generated program depends on the syntactic and semantic well-formedness
of the constructs within the template. In Ruby, DSLs are essentially host
language constructs, and therefore, any guarantees with regards to both
syntactic and semantic well-formedness are provided by the Ruby inter-

14

Vasudevan and Tratt

preter. In Stratego, few guarantees are given with respect to producing
a syntactically and semantically well-formed target AST. For instance, a
meta-variable within a transformation rule can be associated with an incor-
rect type that can lead to the generation of an invalid AST. Similarly, the
target AST can contain semantically ill-formed constructs, which are only
reported at the time of compilation of the end language. In contrast, the
Converge compiler guarantees the syntactic and semantic well-formedness
of the translated-to host language constructs at the time of translation.
From an end user perspective, one wishes to minimise errors related to

syntactic and semantic well-formedness. Since in Ruby and Converge er-
rors related to well-formedness are reported (at run-time and compile-time
respectively), diagnosing such errors is lot easier. In ANTLR and Stratego,
since well-formedness errors are reported only when compiling the end lan-
guage, users may have to revisit the transformation program or the grammar
definition to determine the source of the offending construct (see the error

reporting dimension).

Reuse We identify two aspects that are potentially reusable: the grammar
of the DSL; and the transformation module. In ANTLR, the grammar has
limited reuse because the parser rules are interspersed with semantic actions
and template calls. However, ANTLR supports the use of templates for code
generation that enables a clear separation between data (DSL) and logic
(parser) from presentation (template). This, for a given grammar, allows
code to be generated for multiple target languages. In Ruby, since the DSLs
are essentially host language constructs, the aspect related to the grammar
does not apply. Further, the interleaving of the DSL program and the host
language constructs that evaluate the DSL program limit the reusability of
the DSL implementation. In Converge, since the grammar of the DSL and
the DSL constructs are closely integrated with the host language constructs
that perform the translation, large sections of the DSL implementation have
limited reuse. In Stratego/XT, the modular SDF definition of the object
language, and sections of the transformation program that implement the
expression and the type transformations can potentially be reused for other
DSL implementations.
From an end user perspective, one wishes to maximise the reusability of

the user-defined aspects. In ANTLR the reusability of the grammar for
multiple targets is useful in cases where code needs to be generated for mul-
tiple languages. In Ruby and Converge, the DSL constructs are embedded
within the host languge program thus making it difficult to reuse any of the
user defined aspects. In Stratego, when code needs to be generated for mul-
tiple object languages, the grammar definitions related to meta-variables
and sections of the transformation program related to type and expression
sub-systems can potentially be reused.

15

Vasudevan and Tratt

Context-sensitive transformation For the purposes of this paper, we de-
fine context-sensitive transformation as: a transformation where the appli-
cation of a rule is scoped over the context where the rule is defined rather
than the context where the rule is being applied. We explain context-
sensitive transformation using SQL statements as an example. If there
exists two DSL fragments, where the first fragment contains the definition
of a table – CREATE TABLE emp {id int(10)} – and the second fragment
contains the ‘select’ statement – SELECT * FROM emp WHERE id=x – can
the DSL tool perform the transformation of the SELECT statement based on
the definition of the CREATE statement?
In ANTLR, context-sensitive transformation is possible by using named

scopes. For our SQL scenario, an attribute can be defined within a named
scope which can be then be initialised at the time of the invocation of the
parser rule corresponding to the ‘create’ statement. The parser rule for the
‘select’ statement can then lookup the attribute to retreive the definition
of ‘create’ statement. In Ruby, context-sensitive transformation is only
possible by layering an external program that can then be invoked prior
to the invocation of the host language interpreter. In Stratego, however,
term rewriting can be extended with dynamic rules to perform context-
sensitive transformation. For our SQL scenario, a dynamic rule can be
defined within the context of the ‘create’ statement to perform context-
sensitive transformation, which can then be invoked by the transformation
rule corresponding to the SELECT statement. In Converge, context-sensitive
translation can only be performed by implementing an external program
which can then be invoked at the time of translation.
From an end user perspective, we want to be able to perform transforma-

tion based on contextual information. ANTLR’s approach of using scopes
to perform context-sensitive transformation is rather simple (and therefore
easy to implement) whereas Stratego’s approach of using dynamic rewrite
rules, although is quite powerful and has many applications [3], requires a
much in-depth knowledge of the Stratego language.

Error reporting We identify and present a broad classification of errors that
are applicable when implementing DSLs in Table 4. For the purposes of this
paper, ‘parsing errors’ are errors that are related to the parsing of the DSL;
‘transformation errors’ are errors that occur during the transformation of
ASTs; and ‘run-time errors’ are errors that occur at the time of execution
of the transformed-to constructs.
In ANTLR, parsing errors are reported at the parse stage (Figure 2) of

the translation with line and column number of the source program (DSL).
In ANTLR, the data that is obtained from the parser is fed to the template
engine along with a template, which then generates the target program.
Therefore, any errors related to the translation are reported only at the time

16

Vasudevan and Tratt

Error category ANTLR Ruby Stratego Converge

Parsing errors Parse-time Run-time Parse-time Compile-time

Transformation
errors

End language
compile-time

n/a Transformation,
pretty-printing,
or end lan-
guage compile-
time

Compile-time

Run-time
errors

End language
run-time

Run-time End language
run-time

Host language
run-time

Table 4
A comparison of the error reporting capabilities of ANTLR, Ruby, Stratego, and Converge

of the compilation of the target program. Run-time errors are reported at
the time of execution of the target program. Although the run-time errors
are reported at the time of execution of the target program, the errors
can be manually traced back to the definitions in the grammar by using the
comments in the generated parser (a parser rule has a corresponding method
in the parser and this is noted as a commment). In Ruby, since the DSLs
are essentially host language constructs, parsing and transformation errors
are not applicable; run-time errors are reported by the Ruby interpreter at
run-time.
In Stratego, parsing errors are reported at parse stage of the transforma-

tion pipeline (Figure 3). However, transformations in Stratego can lead to
cascading errors that are either reported at the transformation stage, when
the application of a rule fails; or at post-transformation stages – the stages
following the transformation stage but prior to the execution stage of the
end language – when an AST that is invalid is pretty-printed or when the
target program is compiled. Run-time errors are reported at the time of ex-
ecution of the target program. In particular, transformation and run-time
errors are hard to debug as one needs to manually trace the errors back to
the rules in the transformation program.
Converge uses the concept of src info to report errors precisely, in terms

of the source DSL. A src info records three pieces of information: a source
file; the byte offset within the source file; and the number of bytes from
the initial offset. Since the DSL (and the implementation function) are
embedded within the host language constructs, parsing and transformation
errors are reported at compile-time. Further, the tokens, the AST elements
and the bytecode instructions are associated with multiple src infos that
enable ‘run-time errors’ to be reported with stack backtraces consisting of
the error location within the translated-to Converge program, translation
functions, and the DSL source. For instance, introducing an error in the
guard expression of a transition by changing it from credit + 1 == 3 to
credit + 1 == "3" results in the following stack backtrace:

Traceback (most recent call at bottom):

17

Vasudevan and Tratt

1: File "runfsm.cv", line 20, column 4, length 23

turnstile.event("coin")

...

4: File "FSM_Translator.cv", line 294, column 40, length 18

return [<op.src_infos>| $c{lhs} == $c{rhs} |]

File "runfsm.cv", line 12, column 69, length 2

transition unlocking from locked to unlocked : coin [credit + 1 == "3"] / credit := 0

...

5: (internal), in Int.<

Type_Exception: Expected arg 2 to be conformant to Number but got instance of String.

The fourth entry in the backtrace is related to multiple source locations:
the third and fourth line indicates the location within the source DSL
(runfsm.cv); and the others (only one is shown for brevity) are within
the DSL translator (FSM Translator.cv). Thus src infos provide useful de-
bugging information to both the user and the DSL developer to determine
the cause of an error. Further, quasi-quotes provide a syntactic extension
in the form of [<src infos>| expr |], which allows the addition of extra
src infos to an AST element, to provide customised errors to the user.
From an end user perspective, we want the DSL tool to report errors

in terms of the source DSL. In ANTLR and Stratego, errors related to
transformation are reported only at the time of the compilation of the end
language, thus leading to increased development time and cost. In Ruby
and Converge, the ability to report an error with a complete stack trace
results in much quicker implementation.

8.2 Metrics

In this section, we present our comparative analysis of the four DSL tools
based on the metrics listed in Table 2. The numerical data for these metrics
(derived from DSL implementation in sections 4, 5, 6 and 7) are shown in
Table 5, based on which we present our analysis. We also provide our views
from an end user perspective on how the DSL tools compare for each of these
metrics.

Metric ANTLR Ruby Stratego/XT Converge

Lines of code (grammar, transfor-
mation, and DSL program)

94, 109, 12 n/a, 88, 55 79, 95, 12 36, 164, 11

Aspects to learn 2 1 4 2

Table 5
A comparative analysis of ANTLR, Ruby, Stratego, and Converge based on metrics

Lines of code When evaluating implementation of DSLs based on lines of
code, there are three aspects to be noted: the grammar for the DSL; the
transformation or evaluation (in Ruby) module; and the DSL program.
For our case study, the number of lines of code required to implement the
grammar were significantly higher in ANTLR and Stratego as compared to

18

Vasudevan and Tratt

Converge. This is because in ANTLR, the parser rules are augmented with
semantic actions and template calls, and in Stratego, there are additional
SDF definitions for meta-variables. In Ruby, since the DSLs are essentially
host language constructs, there is no grammar implementation.
The size of the transformation (or translation) program are much more

concise in ANTLR and in Stratego as compared to in Converge. This is
because in ANTLR and in Stratego, multiple nodes in the AST are trans-
formed through the application of a template rule and a strategy respec-
tively, whereas in Converge, the nodes in the AST are traversed (and trans-
lated) systematically. Therefore, for our case study, where ‘states’ and
‘transitions’ are essentially a list of nodes in the AST, the application of
a template rule (or a strategy) will result in a smaller transformation pro-
gram. It should be noted that in ANTLR and in Stratego, the size of the
transformation program will also be determined by the verbosity of the
target language. In Ruby however, the DSL programs are evaluated as is,
resulting in the size of the evaluation program to be generally smaller as
compared to Stratego or Converge.
The size of the DSL input program in Ruby was well over four times the

size of the input program in the other DSL tools. This is primarily because
the syntax of the DSLs in Ruby is limited to that which can be naturally
expressed by the host language whereas in the other three DSL tools, the
syntax of the DSLs are specifically designed for the problem in hand.
From an end user perpective, we are only interested in the aspect—

number of lines of code of the DSL program. This is because the other
two aspects will be implemented only once during the lifecyle of a DSL
whereas programs in a DSL will be implemented potentially many times
over. In general, DSL programs implemented using a pure embedding ap-
proach (Ruby) will always lack the expressive power (and therefore less suc-
cinct) as compared to the tools that support customisable syntax (ANTLR,
Stratego, and Converge).

Aspects to learn In ANTLR, there are two aspects that needs to be learned:
the ‘grammar’ aspect for defining the lexer and parser rules; and the ‘tem-
plate’ aspect for generating the target program. In Ruby, DSLs are imple-
mented using the host language constructs, and therefore there is only one
aspect to be learned—the Ruby language. In Stratego, DSLs are imple-
mented using a pipeline framework that requires learning of many different
aspects: the ‘grammar’ aspect for defining the SDF definitions for the DSL;
the ‘meta-variable‘ aspect for defining the syntactic elements of the object
language as variables; the ‘term-rewrite’ aspect for implementing the trans-
formation program; and finally the ‘piepline framework’ aspect to under-
stand how the different stages of the transformation pipeline work together.
In Converge, to implement DSLs, two aspects needs to be learned: the

19

Vasudevan and Tratt

‘grammar’ aspect for defining the lexer and parser rules; and the ‘compile-
time metaprogramming’ facility to perform translation.
From an end user perspective, we want to learn as few aspects as possi-

ble in implementing DSLs and we want the implementation to be relatively
simple (in terms of technical complexity). Ruby’s approach scores on both
accounts. Both ANTLR and Converge score the same in terms of num-
ber of aspects that needs to be learned but implementation is quicker in
Converge as it has better error reporting facilities. Implementing DSLs in
Stratego is relatively complex as it requires understanding of many different
components for the various stages of the pipeline.

9 Discussion

ANTLR uses a stand-alone approach to implement DSLs. ANTLR comes
with ANTLRWorks [11], a grammar development environment with editing
and debugging facilities that allows developers to quickly prototype and test
their DSLs. The use of scopes allows data to be shared between the parser
rules, which then enables context-sensitive translation. ANTLR supports the
use of templates that enforces separation of data (DSL) and logic (parser)
from presentation (template) which then allows the grammar to be reused for
generating target programs in different languages. However, this separation
also means that the data that is passed from the parser to the template through
template calls can contain invalid constructs, which can then result in the
generation of a syntactically invalid target program.

Ruby and Converge both use an homogeneous embedded approach to im-
plement DSLs. In Ruby, DSLs are implemented using its host language fea-
tures; therefore, the implementation will be quick and the DSLs implemented
will be lightweight in nature. Converge supports implementation of DSLs
using its compile-time meta-programming facility. The close integration of
the parser kit and the compile-time meta-programming facility with its host
language, enables it to provide a systematic approach to implement DSLs.
The concept of src infos is unique to Converge, which enables it to report
errors precisely in terms of the source DSL. However, integrated DSLs in Con-
verge are obviously distinct from normal language constructs, which can be
aesthetically jarring.

In contrast to Ruby and Converge, Stratego/XT uses an heterogeneous
embedded approach and supports implementation of DSLs through program
transformation. Stratego’s approach to DSL implementation provides a con-
sistent mechanism to transform programs between arbitrary languages. Strat-
ego also supports context-sensitive transformation through the use of dynamic
rewrite rules that facilitates the type checking on disjointed fragments within
a DSL implementation. To use the concrete syntax of the object languages

20

Vasudevan and Tratt

within transformation rules, their grammar definitions will have to be merged,
thus creating potential ambiguities within the combined grammar that will
have to be resolved manually.

Based on our case study, DSL programs are much more succinct in
ANTLR, Converge, and Stratego as compared to DSL programs in Ruby.
This is because the syntax of the DSLs in ANTLR, Stratego and Converge
can be customised for the problem in hand, whereas Ruby’s syntax can not be
extended, inherently limiting the DSLs syntax. Therefore, DSLs in ANTLR,
Stratego and Converge are better suited to projects where a DSL will be ap-
plied many times over rather than a quick one-off use.

In terms of the overall complexity of a tool in implementing DSLs, Ruby
and Stratego are on the opposite ends of the spectrum with ANTLR and
Converge somewhere between the two. Ruby requires only one aspect to be
learned and therefore DSL implementation is simple. Stratego’s approach how-
ever is relatively complex because the DSLs are implemented using a pipeline
approach (Figure 3) with each stage requiring an understanding of its vari-
ous components. Therefore, implementation costs are likely to be higher in
Stratego compared to the other approaches. Based on the experience in im-
plementing our case study, we conclude that implementing DSLs in Ruby is
easy but under-powered; in Stratego the implementation is difficult but highly
flexible; and the implementation in Converge is somewhere in the middle.

Our study also highlighted that accurate sources of documentation with
sufficient examples are essential to effective implementation of DSLs. Ruby
being an open source GPL, is extensively documented on the web which the
DSL author can make use of. Although there is plenty of documentation
available for Stratego/XT, we noted that there is no single comprehensive
guide (with examples) that focuses on DSL implementation. ANTLR and
Converge come with examples on how to implement DSLs that can be used
as a reference.

10 Conclusions

In this paper, we implemented DSLs using a stand-alone approach and three
different embedded approaches. The stand-alone approach showed the tradi-
tional method of implementing of DSLs using ANTLR. The three different
embedded approaches include: a weakened form of homogeneous embedded
approach using Ruby; a heterogeneous embedded approach using Stratego;
and a homogeneous embedded approach using Converge. Further, we pre-
sented a comparative study of the above approaches using a case study. From
our comparative study we observed that each approach has its merits and
demerits and there is no single approach that would apply to all scenarios.
Nonetheless, we have highlighted strengths and weaknesses of four approaches

21

Vasudevan and Tratt

that could serve as a guideline for future implementation of DSLs.

References

[1] Bentley, J., Programming pearls: little languages, Communications of the ACM 29 (1986),
711–721.

[2] Bravenboer, M., K. T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.16: components for
transformation systems, ACM SIGPLAN 2006 Workshop on Partial Evaluation and Program
Manipulation (PEPM’06), ACM SIGPLAN (2006), 95–99.

[3] Bravenboer, M., A. V. Dam, K. Olmos, E. Visser, Program Transformation with Scoped
Dynamic Rewrite Rules, Technical Report, Utrecht University, 2005.

[4] Czarnecki, K., J. O’Donnel, J. Striegnitz, and W. Taha, DSL Implementation in MetaOCaml,
Template Haskell, and C++, Domain Specific Program Generation, LNCS 3016 (2004), 51–72.

[5] Deursen, Arie V., P. Klint, and J. Visser, Domain-Specific Languages: An Annotated
Bibliography, ACM SIGPLAN Notices 35 (2000), 26–36.

[6] Dmitriev, S., “Language Oriented Programming: The Next Programming Paradigm,” Technical
report, JetBrains, 2004.

[7] Flanagan, D., and Y. Matsumoto, “The Ruby Programming Language,” O’Reilly Media, Inc.,
2008.

[8] Fleutot, F., and L. Tratt, Contrasting compile-time meta-programming in Metalua and
Converge, 3rd Workshop on Dynamic Languages and Applications (2007).

[9] Hudak, P., Modular Domain Specific Languages and Tools, ICSR ’98: Proceedings of the 5th
International Conference on Software Reuse 0 (1998), 134–142.

[10] Levine, J., T. Mason, and D. Brown, “Lex & Yacc,” 2nd Ed., O’Reilly Media, Inc., 1992.

[11] Parr, Terence, “The Definitive ANTLR Reference: Building Domain-Specific Languages,” The
Pragmatic Bookshelf, 2007.

[12] Skalaski, K., M. Moskal, and P. Olszta, Meta-programming in Nemerle, Technical report, 2004.

[13] Tratt, L., Domain Specific Language Implementation via Compile-Time Meta-Programming,
ACM TOPLAS 30 (2008), 1–40.

[14] Van Wyk, E., D. Bodin, L. Krishnan, and J. Gao, Silver: an Extensible Attribute Grammar
System, ENTCS 203 (2008), 103–116.

[15] Visser, E., Meta-Programming with Concrete Object Syntax, GPCE02 LNCS 2487 (2002),
299–315.

[16] Documentation on Intentional Domain Workbench, URL:
http://blog.intentsoft.com/intentional software/2009/05/dsl-devcon.html

22

http://blog.intentsoft.com/intentional_software/2009/05/dsl-devcon.html

	Introduction
	Case Study: Finite State Machine
	Dimenstions and Metrics
	Implementation of a DSL in ANTLR
	Implementation of a DSL in Ruby
	Implementation of a DSL in Stratego/XT
	Implementation of a DSL in Converge
	Analysis and Comparison
	Dimensions
	Metrics

	Discussion
	Conclusions
	References

